数据结构与算法之美学习笔记:51 | 并行算法:如何利用并行处理提高算法的执行效率?

目录

  • 前言
  • 并行排序
  • 并行查找
  • 并行字符串匹配
  • 并行搜索
  • 总结引申

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述

时间复杂度是衡量算法执行效率的一种标准。但是,时间复杂度并不能跟性能划等号。在真实的软件开发中,即便在不降低时间复杂度的情况下,也可以通过一些优化手段,提升代码的执行效率。毕竟,对于实际的软件开发来说,即便是像 10%、20% 这样微小的性能提升,也是非常可观的。

算法的目的就是为了提高代码执行的效率。那当算法无法再继续优化的情况下,我们该如何来进一步提高执行效率呢?我们今天就讲一种非常简单但又非常好用的优化方法,那就是并行计算。今天,我就通过几个例子,给你展示一下,如何借助并行计算的处理思想对算法进行改造?

并行排序

假设我们要给大小为 8GB 的数据进行排序,并且,我们机器的内存可以一次性容纳这么多数据。对于排序来说,最常用的就是时间复杂度为 O(nlogn) 的三种排序算法,归并排序、快速排序、堆排序。从理论上讲,这个排序问题,已经很难再从算法层面优化了。而利用并行的处理思想,我们可以很轻松地将这个给 8GB 数据排序问题的执行效率提高很多倍。具体的实现思路有下面两种。

第一种是对归并排序并行化处理。我们可以将这 8GB 的数据划分成 16 个小的数据集合,每个集合包含 500MB 的数据。我们用 16 个线程,并行地对这 16 个 500MB 的数据集合进行排序。这 16 个小集合分别排序完成之后,我们再将这 16 个有序集合合并。

第二种是对快速排序并行化处理。我们通过扫描一遍数据,找到数据所处的范围区间。我们把这个区间从小到大划分成 16 个小区间。我们将 8GB 的数据划分到对应的区间中。针对这 16 个小区间的数据,我们启动 16 个线程,并行地进行排序。等到 16 个线程都执行结束之后,得到的数据就是有序数据了。

对比这两种处理思路,它们利用的都是分治的思想,对数据进行分片,然后并行处理。它们的区别在于,第一种处理思路是,先随意地对数据分片,排序之后再合并。第二种处理思路是,先对数据按照大小划分区间,然后再排序,排完序就不需要再处理了。这个跟归并和快排的区别如出一辙。

这里我还要多说几句,如果要排序的数据规模不是 8GB,而是 1TB,那问题的重点就不是算法的执行效率了,而是数据的读取效率。因为 1TB 的数据肯定是存在硬盘中,无法一次性读取到内存中,这样在排序的过程中,就会有频繁地磁盘数据的读取和写入。如何减少磁盘的 IO 操作,减少磁盘数据读取和写入的总量,就变成了优化的重点。不过这个不是我们这节要讨论的重点,你可以自己思考下。

并行查找

我们知道,散列表是一种非常适合快速查找的数据结构。

如果我们是给动态数据构建索引,在数据不断加入的时候,散列表的装载因子就会越来越大。为了保证散列表性能不下降,我们就需要对散列表进行动态扩容。对如此大的散列表进行动态扩容,一方面比较耗时,另一方面比较消耗内存。比如,我们给一个 2GB 大小的散列表进行扩容,扩展到原来的 1.5 倍,也就是 3GB 大小。这个时候,实际存储在散列表中的数据只有不到 2GB,所以内存的利用率只有 60%,有 1GB 的内存是空闲的。

实际上,我们可以将数据随机分割成 k 份(比如 16 份),每份中的数据只有原来的 1/k,然后我们针对这 k 个小数据集合分别构建散列表。这样,散列表的维护成本就变低了。当某个小散列表的装载因子过大的时候,我们可以单独对这个散列表进行扩容,而其他散列表不需要进行扩容。

还是刚才那个例子,假设现在有 2GB 的数据,我们放到 16 个散列表中,每个散列表中的数据大约是 150MB。当某个散列表需要扩容的时候,我们只需要额外增加 150*0.5=75MB 的内存(假设还是扩容到原来的 1.5 倍)。无论从扩容的执行效率还是内存的利用率上,这种多个小散列表的处理方法,都要比大散列表高效。

当我们要查找某个数据的时候,我们只需要通过 16 个线程,并行地在这 16 个散列表中查找数据。这样的查找性能,比起一个大散列表的做法,也并不会下降,反倒有可能提高。

当往散列表中添加数据的时候,我们可以选择将这个新数据放入装载因子最小的那个散列表中,这样也有助于减少散列冲突。

并行字符串匹配

我们前面学过,在文本中查找某个关键词这样一个功能,可以通过字符串匹配算法来实现。我们之前学过的字符串匹配算法有 KMP、BM、RK、BF 等。当在一个不是很长的文本中查找关键词的时候,这些字符串匹配算法中的任何一个,都可以表现得非常高效。但是,如果我们处理的是超级大的文本,那处理的时间可能就会变得很长,那有没有办法加快匹配速度呢?

我们可以把大的文本,分割成 k 个小文本。假设 k 是 16,我们就启动 16 个线程,并行地在这 16 个小文本中查找关键词,这样整个查找的性能就提高了 16 倍。16 倍效率的提升,从理论的角度来说并不多。但是,对于真实的软件开发来说,这显然是一个非常可观的优化。

不过,这里还有一个细节要处理,那就是原本包含在大文本中的关键词,被一分为二,分割到两个小文本中,这就会导致尽管大文本中包含这个关键词,但在这 16 个小文本中查找不到它。实际上,这个问题也不难解决,我们只需要针对这种特殊情况,做一些特殊处理就可以了。

我们假设关键词的长度是 m。我们在每个小文本的结尾和开始各取 m 个字符串。前一个小文本的末尾 m 个字符和后一个小文本的开头 m 个字符,组成一个长度是 2m 的字符串。我们再拿关键词,在这个长度为 2m 的字符串中再重新查找一遍,就可以补上刚才的漏洞了。

并行搜索

前面我们学习过好几种搜索算法,它们分别是广度优先搜索、深度优先搜索、Dijkstra 最短路径算法、A* 启发式搜索算法。对于广度优先搜索算法,我们也可以将其改造成并行算法。

广度优先搜索是一种逐层搜索的搜索策略。基于当前这一层顶点,我们可以启动多个线程,并行地搜索下一层的顶点。在代码实现方面,原来广度优先搜索的代码实现,是通过一个队列来记录已经遍历到但还没有扩展的顶点。现在,经过改造之后的并行广度优先搜索算法,我们需要利用两个队列来完成扩展顶点的工作。

假设这两个队列分别是队列 A 和队列 B。多线程并行处理队列 A 中的顶点,并将扩展得到的顶点存储在队列 B 中。等队列 A 中的顶点都扩展完成之后,队列 A 被清空,我们再并行地扩展队列 B 中的顶点,并将扩展出来的顶点存储在队列 A。这样两个队列循环使用,就可以实现并行广度优先搜索算法。

总结引申

上一节,我们通过实际软件开发中的“索引”这一技术点,回顾了之前学过的一些支持动态数据集合的数据结构。今天,我们又通过“并行算法”这个话题,回顾了之前学过的一些算法。

今天的内容比较简单,没有太复杂的知识点。我通过一些例子,比如并行排序、查找、搜索、字符串匹配,给你展示了并行处理的实现思路,也就是对数据进行分片,对没有依赖关系的任务,并行地执行。

并行计算是一个工程上的实现思路,尽管跟算法关系不大,但是,在实际的软件开发中,它确实可以非常巧妙地提高程序的运行效率,是一种非常好用的性能优化手段。

特别是,当要处理的数据规模达到一定程度之后,我们无法通过继续优化算法,来提高执行效率 的时候,我们就需要在实现的思路上做文章,利用更多的硬件资源,来加快执行的效率。所以,在很多超大规模数据处理中,并行处理的思想,应用非常广泛,比如 MapReduce 实际上就是一种并行计算框架。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/675410.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux应用开发---网络通信

Linux应用开发—网络通信 1 网络通信概述 Linux下的网络编程,我们一般称为 socket 编程,socket 是内核向应用层提供的一套网络编程接口,我们可以基于socket接口开发自己的网络相关应用程序。 1.1 socket 简介 套接字(socket&…

Jenkins升级后,构建任务配置界面重复错位

最近我把公司的Jenkins服务升级到了最新版本,升级完成后,点了一下构建任务,发现能够构建成功,就以为顺利完成升级了,下班走了,结果第二天,进入构建任务配置界面发现,界面一团乱麻&am…

LabVIEW热电偶自动校准系统

设计并实现一套基于LabVIEW平台的工业热电偶自动校准系统,通过自动化技术提高校准效率和精度,降低人力成本,确保温度测量的准确性和可靠性。 工业生产过程中,温度的准确测量对产品质量控制至关重要。传统的热电偶校准方式依赖人工…

[Java][算法 双指针]Day 02---LeetCode 热题 100---04~07

LeetCode 热题 100---04~07 第一题:移动零 思路 找到每一个为0的元素 然后移到数组的最后 但是需要注意的是 要在给定的数组原地进行修改 并且其他非零元素的相对顺序不能改变 我们采用双指针法 定义两个指针i和j i和j一开始分别都在0索引位置 然后判断j所…

tab 切换类交互功能实现

tab切换类交互&#xff1a; 记录激活项&#xff08;整个对象/id/index)动态类型控制 下面以一个地址 tab 切换业务功能为例&#xff1a; <div class"text item" :class"{active : activeAddress.id item.id}" click"switchAddress(item)"…

v-if 和v-for的联合规则及示例

第073个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使用&#xff0c;computed&a…

《游戏引擎架构》 -- 学习2

声明&#xff0c;定义&#xff0c;以及链接规范 翻译单元 声明与定义 链接规范 C/C 内存布局 可执行映像 程序堆栈 动态分配的堆 对象的内存布局 kilobyte 和 kibibyte 流水线缓存以及优化 未完待续。。。

SQL注入(SQL Injection)从注入到拖库 —— 简单的手工注入实战指南精讲

基本SQL注入步骤&#xff1a; 识别目标&#xff1a;确定目标网站或应用程序存在潜在的SQL注入漏洞。收集信息&#xff1a;通过查看页面源代码、URL参数和可能的错误信息等&#xff0c;搜集与注入有关的信息。判断注入点&#xff1a;确定可以注入的位置&#xff0c;比如输入框、…

【网工】华为设备命令学习(Telnet)

本次实验AR3为我们实际中远程的路由&#xff0c;AR4模拟我们的设备&#xff0c;最终实现Telnet的远程控制路由&#xff01; 本次笔记主要记录Telnet技术实现原理&#xff0c;后续再补充具体配置代码。 Telnet协议是TCP/IP协议族中的一员&#xff0c;是Internet远程登录服务的…

基于微信小程序的新生报到系统的研究与实现,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

前端实现支付跳转以及回跳

// 支付地址 const baseURL http://pcapi-xiaotuxian-front-devtest.itheima.net/ const backURL http://127.0.0.1:5173/paycallback const redirectUrl encodeURIComponent(backURL) const payUrl ${baseURL}pay/aliPay?orderId${route.query.id}&redirect${redirec…

【精选】java初识多态 子类继承父类

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏…

github拉取项目,pycharm配置远程服务器环境

拉取项目 从github上拉取项目到pycharmpycharm右下角选择远程服务器上的环境 2.1. 如图 2.2. 输入远程服务器的host&#xff0c;port&#xff0c;username&#xff0c;password连接 2.3. 选择服务器上的环境 链接第3点 注&#xff1a;如果服务器上环境不存在&#xff0c;先创建…

vue3-内置组件-Teleport

Teleport <Teleport> 是一个内置组件&#xff0c;它可以将一个组件内部的一部分模板“传送”到该组件的 DOM 结构外层的位置去。 基本用法 有时我们可能会遇到这样的场景&#xff1a;一个组件模板的一部分在逻辑上从属于该组件&#xff0c;但从整个应用视图的角度来看…

基于Linux操作系统的Docker容器安装MySQL随笔

1、在Linux上安装Docker容器 cd /etc/yum.repos.d/ curl -O https://download.docker.com/linux/centos/docker-ce.repo sed -i s/$releasever/8/g docker-ce.repo yum install -y docker-ce 2、修改Docker默认镜像仓库&#xff0c;然后启动Docker容器 sudo mkdir -p /etc/do…

yolov8自制数据训练集

目录 1.YOLOv8是啥 2.系统环境 3.安装labelimg 3.1安装 3.2启动 labelimg 4.自制分类图片 4.1 YOLO数据集要求 4.2 图片保存目录 4.3 利用labelimg进行标注 4.4 存储图片 4.5 标注文件 5.数据集训练 5.1yaml文件 5.2训练命令 5.3查看训练过程 5.3.1启动tensorb…

实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》

论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf 代码链接&#xff1a;https://github.com/pytorch/vision 摘要 卷积网络是强大的视觉模型&#xff0c;可以产生特征层次结构。我们证明&#xff0c…

Qt网络编程-TCP与UDP

网络基础 TCP与UDP基础 关于TCP与UDP的基础这里就不过多介绍了&#xff0c;具体可以查看对应百度百科介绍&#xff1a; TCP&#xff08;传输控制协议&#xff09;_百度百科 (baidu.com) UDP_百度百科 (baidu.com) 需要知道这两者的区别&#xff1a; 可靠性&#xff1a; TC…

Java面向对象 方法的重写

目录 重写重写的规则实例创建Person类创建Student类测试 重载和重写的区别 重写 发生在子类和父类中&#xff0c;当子类对父类提供的方法不满意的时候&#xff0c;要对父类的方法进行重写。 重写的规则 子类的方法名字和父类必须一致&#xff0c;参数列表&#xff08;个数&…

15章-Python编程:从入门到实践

第15章生成数据 数据可视化指的是通过可视化表示来探索数据&#xff0c;它与数据挖掘数紧密相关&#xff0c;而数据挖掘指的是使用代码来探索数据集的规律和关联。 数据集可以是用一行代码就能表示的小型数字列表&#xff0c;也可以是数以吉字节的数据。漂亮地呈现数据关乎的并…