请手写几种js排序算法

  • 什么是排序算法
    • 冒泡排序
    • 选择排序
    • 插入排序
    • 快速排序
    • 归并排序(Merge Sort)
      • 思想
      • 实现
      • 测试
      • 分析
      • 动画
    • 快速排序 (Quick Sort)
      • 思想
      • 实现
      • 测试
      • 分析
      • 动画
    • 思考:快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ?
    • 希尔排序(Shell Sort)
      • 思想
      • 过程
      • 实现
      • 测试
      • 分析
      • 动画
    • 堆排序(Heap Sort)
      • 堆的定义
      • 思想
      • 实现
      • 测试
      • 分析
      • 动画
    • 排序算法的复杂性对比

什么是排序算法

排序算法是计算机科学中常用的一种算法,用于将一组元素按照特定的顺序进行排列。

排序算法是一种针对数据集合进行排序的算法。

排序算法通常采用比较和交换的方式来对数据进行排序,使得数据按照一定规则排列。

排序算法在计算机科学中有着重要的应用,例如在数据检索、数据分析、数据压缩等领域都需要使用排序算法。

排序算法可以分为内部排序和外部排序两种。

内部排序是指所有需要排序的数据能够一次性存放在计算机的内存中进行排序的过程。

而外部排序则是指需要对不适合全部存储在内存中的大规模数据进行排序,通过将数据分成多个可以全部存储在内存中的部分进行排序,最终再合并成一个完整的排序结果。

以下是几种常见的排序算法:

  1. 冒泡排序(Bubble Sort):该算法通过相邻元素之间的比较和交换来进行排序,每次循环将最大的元素逐渐移到数组的最后。

  2. 插入排序(Insertion Sort):该算法类似于整理扑克牌的过程,从未排序的部分选择一个元素插入到已排序的部分,直到所有元素都被插入到正确的位置。

  3. 选择排序(Selection Sort):该算法每次从未排序的部分选择最小(或最大)的元素,并与当前位置进行交换,重复这个过程直到数组完全有序。

  4. 快速排序(Quick Sort):该算法使用分治法的思想,首先选择一个基准元素,然后将其他元素分为两个子数组,小于基准的放左边,大于基准的放右边,然后递归地对子数组进行排序。

  5. 归并排序(Merge Sort):该算法采用分治法的思想,将待排序的数组不断地二分,直到每个子数组只包含一个元素,然后将这些子数组合并成一个有序的数组。

以上仅是排序算法中的几种常见算法,每种算法的时间复杂度、空间复杂度和稳定性等特点各不相同,选择适合具体场景的排序算法能够提高排序效率。

冒泡排序

冒泡排序是最基本的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - i - 1; j++) {if (arr[j] > arr[j + 1]) {var temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}return arr;
}

选择排序

选择排序也是比较简单的一种排序算法,它的主要思想是在未排序的数列中找到最小元素,并把它放到已排序的数列的末尾。

function selectionSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {var minIndex = i;for (var j = i + 1; j < len; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}if (minIndex !== i) {var temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}}return arr;
}

插入排序

插入排序的基本思想是将待排序的数列分成已排序和未排序两部分,每次从未排序部分取出一个元素,然后将它插入到已排序部分的合适位置。

function insertionSort(arr) {var len = arr.length;for (var i = 1; i < len; i++) {var j = i;var temp = arr[i];while (j > 0 && arr[j - 1] > temp) {arr[j] = arr[j - 1];j--;}arr[j] = temp;}return arr;
}

快速排序

快速排序是一种比较高效的排序算法,它的主要思想是选择一个基准元素,然后把比它小的元素放在左边,比它大的元素放在右边,然后对左右两部分分别进行递归排序。

function quickSort(arr, left, right) {if (left < right) {var pivot = partition(arr, left, right);quickSort(arr, left, pivot - 1);quickSort(arr, pivot + 1, right);}return arr;
}function partition(arr, left, right) {var pivot = arr[left];var i = left;var j = right;while (i < j) {while (arr[j] >= pivot && i < j) {j--;}arr[i] = arr[j];while (arr[i] <= pivot && i < j) {i++;}arr[j] = arr[i];}arr[i] = pivot;return i;
}

以上是几种常见的 JavaScript 排序算法的手写实现,它们在实际应用中都有着广泛的应用。

更多详细内容,请微信搜索“前端爱好者戳我 查看

归并排序(Merge Sort)

思想

排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

归并排序采用的是 分治思想

分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。

注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 === Math.floor(x / 2) 。

实现
const mergeSort = arr => {//采用自上而下的递归方法const len = arr.length;if (len < 2) {return arr;}// length >> 1 和 Math.floor(len / 2) 等价let middle = Math.floor(len / 2),left = arr.slice(0, middle),right = arr.slice(middle); // 拆分为两个子数组return merge(mergeSort(left), mergeSort(right));
};
const merge = (left, right) => {const result = [];while (left.length && right.length) {// 注意: 判断的条件是小于或等于,如果只是小于,那么排序将不稳定.if (left[0] <= right[0]) {result.push(left.shift());} else {result.push(right.shift());}}while (left.length) result.push(left.shift());while (right.length) result.push(right.shift());return result;
};
测试
// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.time('归并排序耗时');
console.log('arr :', mergeSort(arr));
console.timeEnd('归并排序耗时');
// arr : [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
// 归并排序耗时: 0.739990234375ms
分析

第一,归并排序是原地排序算法吗 ?

这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。

实际上,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

所以,归并排序不是原地排序算法

第二,归并排序是稳定的排序算法吗 ?

merge 方法里面的 left[0] <= right[0] ,保证了值相同的元素,在合并前后的先后顺序不变。

归并排序是一种稳定的排序方法

第三,归并排序的时间复杂度是多少 ?

从效率上看,归并排序可算是排序算法中的佼佼者。假设数组长度为 n,那么拆分数组共需 logn 步, 又每步都是一个普通的合并子数组的过程,时间复杂度为 O(n),故其综合时间复杂度为 O(nlogn)。

最佳情况:T(n) = O(nlogn)。

最差情况:T(n) = O(nlogn)。

平均情况:T(n) = O(nlogn)。

动画

快速排序 (Quick Sort)

快速排序的特点就是快,而且效率高!它是处理大数据最快的排序算法之一。

思想

先找到一个基准点(一般指数组的中部),然后数组被该基准点分为两部分,依次与该基准点数据比较,如果比它小,放左边;反之,放右边。

左右分别用一个空数组去存储比较后的数据。

最后递归执行上述操作,直到数组长度 <= 1;

特点:快速,常用。

缺点:需要另外声明两个数组,浪费了内存空间资源。

实现

方法一

const quickSort1 = arr => {if (arr.length <= 1) {return arr;}//取基准点const midIndex = Math.floor(arr.length / 2);//取基准点的值,splice(index,1) 则返回的是含有被删除的元素的数组。const valArr = arr.splice(midIndex, 1);const midIndexVal = valArr[0];const left = []; //存放比基准点小的数组const right = []; //存放比基准点大的数组//遍历数组,进行判断分配for (let i = 0; i < arr.length; i++) {if (arr[i] < midIndexVal) {left.push(arr[i]); //比基准点小的放在左边数组} else {right.push(arr[i]); //比基准点大的放在右边数组}}//递归执行以上操作,对左右两个数组进行操作,直到数组长度为 <= 1return quickSort1(left).concat(midIndexVal, quickSort1(right));
};
const array2 = [5, 4, 3, 2, 1];
console.log('quickSort1 ', quickSort1(array2));
// quickSort1: [1, 2, 3, 4, 5]

方法二

// 快速排序
const quickSort = (arr, left, right) => {let len = arr.length,partitionIndex;left = typeof left != 'number' ? 0 : left;right = typeof right != 'number' ? len - 1 : right;if (left < right) {partitionIndex = partition(arr, left, right);quickSort(arr, left, partitionIndex - 1);quickSort(arr, partitionIndex + 1, right);}return arr;
};
const partition = (arr, left, right) => {//分区操作let pivot = left, //设定基准值(pivot)index = pivot + 1;for (let i = index; i <= right; i++) {if (arr[i] < arr[pivot]) {swap(arr, i, index);index++;}}swap(arr, pivot, index - 1);return index - 1;
};
const swap = (arr, i, j) => {let temp = arr[i];arr[i] = arr[j];arr[j] = temp;
};
测试
// 测试
const array = [5, 4, 3, 2, 1];
console.log('原始array:', array);const newArr = quickSort(array);
console.log('newArr:', newArr);
// 原始 array:  [5, 4, 3, 2, 1]
// newArr:     [1, 4, 3, 2, 5]
分析

第一,快速排序是原地排序算法吗 ?

因为 partition() 函数进行分区时,不需要很多额外的内存空间,所以快排是原地排序算法。

第二,快速排序是稳定的排序算法吗 ?

和选择排序相似,快速排序每次交换的元素都有可能不是相邻的,因此它有可能打破原来值为相同的元素之间的顺序。因此,快速排序并不稳定。

第三,快速排序的时间复杂度是多少 ?

极端的例子:如果数组中的数据原来已经是有序的了,比如 1,3,5,6,8。

如果我们每次选择最后一个元素作为 pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约 n 次分区操作,才能完成快排的整个过程。每次分区我们平均要扫描大约 n / 2 个元素,这种情况下,快排的时间复杂度就从 O(nlogn) 退化成了 O(n2)。

最佳情况:T(n) = O(nlogn)。

最差情况:T(n) = O(n2)。

平均情况:T(n) = O(nlogn)。

动画

思考:快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ?

可以发现:

  • 归并排序的处理过程是由下而上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上而下的,先分区,然后再处理子问题。
  • 归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。
  • 快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

希尔排序(Shell Sort)

思想

先将整个待排序的记录序列分割成为若干子序列。

分别进行直接插入排序。

待整个序列中的记录基本有序时,再对全体记录进行依次直接插入排序。

过程

举个易于理解的例子:[35, 33, 42, 10, 14, 19, 27, 44],我们采取间隔 4。

创建一个位于 4 个位置间隔的所有值的虚拟子列表。

下面这些值是 { 35, 14 },{ 33, 19 },{ 42, 27 } 和 { 10, 44 }。

我们比较每个子列表中的值,并在原始数组中交换它们(如果需要)。

完成此步骤后,新数组应如下所示。

然后,我们采用 2 的间隔,这个间隙产生两个子列表:{ 14, 27, 35, 42 }, { 19, 10, 33, 44 }。

我们比较并交换原始数组中的值(如果需要)。完成此步骤后,数组变成:[14, 10, 27, 19, 35, 33, 42, 44],图如下所示,10 与 19 的位置互换一下。

最后,我们使用值间隔 1 对数组的其余部分进行排序,Shell sort 使用插入排序对数组进行排序。

实现
const shellSort = arr => {let len = arr.length,temp,gap = 1;console.time('希尔排序耗时');while (gap < len / 3) {//动态定义间隔序列gap = gap * 3 + 1;}for (gap; gap > 0; gap = Math.floor(gap / 3)) {for (let i = gap; i < len; i++) {temp = arr[i];let j = i - gap;for (; j >= 0 && arr[j] > temp; j -= gap) {arr[j + gap] = arr[j];}arr[j + gap] = temp;console.log('arr  :', arr);}}console.timeEnd('希尔排序耗时');return arr;
};
测试
// 测试
const array = [35, 33, 42, 10, 14, 19, 27, 44];
console.log('原始array:', array);
const newArr = shellSort(array);
console.log('newArr:', newArr);
// 原始 array:   [35, 33, 42, 10, 14, 19, 27, 44]
// arr      :   [14, 33, 42, 10, 35, 19, 27, 44]
// arr      :   [14, 19, 42, 10, 35, 33, 27, 44]
// arr      :   [14, 19, 27, 10, 35, 33, 42, 44]
// arr      :   [14, 19, 27, 10, 35, 33, 42, 44]
// arr      :   [14, 19, 27, 10, 35, 33, 42, 44]
// arr      :   [14, 19, 27, 10, 35, 33, 42, 44]
// arr      :   [10, 14, 19, 27, 35, 33, 42, 44]
// arr      :   [10, 14, 19, 27, 35, 33, 42, 44]
// arr      :   [10, 14, 19, 27, 33, 35, 42, 44]
// arr      :   [10, 14, 19, 27, 33, 35, 42, 44]
// arr      :   [10, 14, 19, 27, 33, 35, 42, 44]
// 希尔排序耗时: 3.592041015625ms
// newArr:     [10, 14, 19, 27, 33, 35, 42, 44]
分析

第一,希尔排序是原地排序算法吗 ?

希尔排序过程中,只涉及相邻数据的交换操作,只需要常量级的临时空间,空间复杂度为 O(1) 。所以,希尔排序是原地排序算法。

第二,希尔排序是稳定的排序算法吗 ?

我们知道,单次直接插入排序是稳定的,它不会改变相同元素之间的相对顺序,但在多次不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,可能导致相同元素相对顺序发生变化。

因此,希尔排序不稳定。

第三,希尔排序的时间复杂度是多少 ?

最佳情况:T(n) = O(n log n)。

最差情况:T(n) = O(n log2 n)。

平均情况:T(n) = O(n log2 n)。

动画

堆排序(Heap Sort)

堆的定义

堆其实是一种特殊的树。只要满足这两点,它就是一个堆。

堆是一个完全二叉树。

完全二叉树:除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

也可以说:堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作大顶堆。

对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作小顶堆。

其中图 1 和 图 2 是大顶堆,图 3 是小顶堆,图 4 不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

思想
  • 将初始待排序关键字序列 (R1, R2 … Rn) 构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素 R[1] 与最后一个元素 R[n] 交换,此时得到新的无序区 (R1, R2, … Rn-1) 和新的有序区 (Rn) ,且满足 R[1, 2 … n-1] <= R[n]。
  • 由于交换后新的堆顶 R[1] 可能违反堆的性质,因此需要对当前无序区 (R1, R2 … Rn-1) 调整为新堆,然后再次将 R[1] 与无序区最后一个元素交换,得到新的无序区 (R1, R2 … Rn-2) 和新的有序区 (Rn-1, Rn)。不断重复此过程,直到有序区的元素个数为 n - 1,则整个排序过程完成。
实现
// 堆排序
const heapSort = array => {console.time('堆排序耗时');// 初始化大顶堆,从第一个非叶子结点开始for (let i = Math.floor(array.length / 2 - 1); i >= 0; i--) {heapify(array, i, array.length);}// 排序,每一次 for 循环找出一个当前最大值,数组长度减一for (let i = Math.floor(array.length - 1); i > 0; i--) {// 根节点与最后一个节点交换swap(array, 0, i);// 从根节点开始调整,并且最后一个结点已经为当前最大值,不需要再参与比较,所以第三个参数为 i,即比较到最后一个结点前一个即可heapify(array, 0, i);}console.timeEnd('堆排序耗时');return array;
};
// 交换两个节点
const swap = (array, i, j) => {let temp = array[i];array[i] = array[j];array[j] = temp;
};
// 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是:
// 假设结点 i 以下的子堆已经是一个大顶堆,heapify 函数实现的
// 功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。
// 后面将写一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点
// 都执行 heapify 操作,所以就满足了结点 i 以下的子堆已经是一大顶堆
const heapify = (array, i, length) => {let temp = array[i]; // 当前父节点// j < length 的目的是对结点 i 以下的结点全部做顺序调整for (let j = 2 * i + 1; j < length; j = 2 * j + 1) {temp = array[i]; // 将 array[i] 取出,整个过程相当于找到 array[i] 应处于的位置if (j + 1 < length && array[j] < array[j + 1]) {j++; // 找到两个孩子中较大的一个,再与父节点比较}if (temp < array[j]) {swap(array, i, j); // 如果父节点小于子节点:交换;否则跳出i = j; // 交换后,temp 的下标变为 j} else {break;}}
};
测试
const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
console.log('原始array:', array);
const newArr = heapSort(array);
console.log('newArr:', newArr);
// 原始 array:  [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]
// 堆排序耗时: 0.15087890625ms
// newArr:     [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]
分析

第一,堆排序是原地排序算法吗 ?

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。

第二,堆排序是稳定的排序算法吗 ?

因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

所以,堆排序是不稳定的排序算法。

第三,堆排序的时间复杂度是多少 ?

堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。

最佳情况:T(n) = O(nlogn)。

最差情况:T(n) = O(nlogn)。

平均情况:T(n) = O(nlogn)。

动画

排序算法的复杂性对比

复杂性对比

名称平均最好最坏空间稳定性排序方式
归并排序O(n log n)O(n log n)O(n log n)O(n)YesOut-place
快速排序O(n log n)O(n log n)O(n2)O(logn)NoIn-place
希尔排序O(n log n)O(n log2 n)O(n log2 n)O(1)NoIn-place
堆排序O(n log n)O(n log n)O(n log n)O(1)NoIn-place

算法可视化工具

算法可视化工具 algorithm-visualizer

算法可视化工具 algorithm-visualizer 是一个交互式的在线平台,可以从代码中可视化算法,还可以看到代码执行的过程。

效果如下图。

旨在通过交互式可视化的执行来揭示算法背后的机制。

算法可视化来源 https://visualgo.net/en

效果如下图。

https://www.ee.ryerson.ca

illustrated-algorithms

变量和操作的可视化表示增强了控制流和实际源代码。您可以快速前进和后退执行,以密切观察算法的工作方式。

参考文档

  • https://www.shuzhiduo.com/A/1O5E3BPWz7/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/675330.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3 之 商城项目—一级分类

整体认识和路由配置 场景&#xff1a;点击哪个分类跳转到对应的路由页面&#xff0c;路由传对应的参数 router/index.js import { createRouter, createWebHashHistory } from vue-router import Layout from /views/Layout/index.vue import Home from /views/Home/index.vu…

Spring Boot + 七牛OSS: 简化云存储集成

引言 Spring Boot 是一个非常流行的、快速搭建应用的框架&#xff0c;它无需大量的配置即可运行起来&#xff0c;而七牛云OSS提供了稳定高效的云端对象存储服务。利用两者的优势&#xff0c;可以为应用提供强大的文件存储功能。 为什么选择七牛云OSS? 七牛云OSS提供了高速的…

Akamai 如何揪出微软 RPC 服务中的漏洞

近日&#xff0c;Akamai研究人员在微软Windows RPC服务中发现了两个重要漏洞&#xff1a;严重程度分值为4.3的CVE-2022-38034&#xff0c;以及分值为8.8的CVE-2022-38045。这些漏洞可以利用设计上的瑕疵&#xff0c;通过缓存机制绕过MS-RPC安全回调。我们已经确认&#xff0c;所…

nodejs+vue高校实验室耗材管理系统_m20vy

用户功能&#xff1a; 登录后要有一个首页 比如:可以看见目前的耗材消耗记录&#xff0c;可做成图表菜单栏在左侧显示 1.个人信息管理 可以对基本信息进行修改&#xff0c;(修改密码时需要验证) 2.耗材管理&#xff08;耗材信息&#xff09; 普通用户可以查询当前相关耗材信息[…

问题:银行账号建立以后,一般需要维护哪些设置,不包括() #学习方法#经验分享

问题&#xff1a;银行账号建立以后&#xff0c;一般需要维护哪些设置&#xff0c;不包括&#xff08;&#xff09; A&#xff0e;维护结算科目对照 B&#xff0e;期初余额初始化刷 C&#xff0e;自定义转账定义 D&#xff0e;对账单初始化 参考答案如图所示

VMware17上安装centos7.9

一、下载安装包&#xff1a; 1、VMware安装 VMware 下载地址&#xff1a; https://www.vmware.com/cn/products/workstation-pro.html VMware下载后安装即可 安装教程可以参考VMware安装教程 2、CentOs7.9下载地址&#xff1a; http://mirrors.aliyun.com/centos/7.9.2009/iso…

【flink状态管理(三)】StateBackend的整体设计、StateBackend创建说明

文章目录 一. 状态后端概述二. StateBackend的整体设计1. 核心功能2. StateBackend的UML3. 小结 三. StateBackend的加载与初始化1. StateBackend创建概述2. StateBackend创建过程 一. 状态后端概述 StateBackend作为状态存储后端&#xff0c;提供了创建和获取KeyedStateBacke…

蓝桥杯(Web大学组)2022国赛真题:水果消消乐

思路&#xff1a; 记录点击次数&#xff0c;点击次数为1时&#xff0c;记录点击下标&#xff08;用于隐藏or消除&#xff09;、点击种类&#xff0c;点击次数为2时&#xff0c;判断该下标所对应种类与第一次是否相同 相同&#xff1a;两个都visibility:hidden &#xff08;占…

【数据分享】1929-2023年全球站点的逐月平均风速(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、能见度等指标&#xff0c;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 有关气象指标的监测站点数据&#xff0c;之前我们分享过1929-2023年全球气象站…

Redis事务和Redis管道

文章目录 1.Redis事务1.1 Redis事务是什么&#xff0c;能干嘛&#xff1f;1.2 Redis事务和数据库事务的差异1.3 Redis事务的相关命令 2.Redis管道2.1 Redis管道是什么2.2 管道与原生批量命令对比2.3 管道与事务对比2.4 使用管道注意事项 1.Redis事务 1.1 Redis事务是什么&…

数学建模-灰色预测最强讲义 GM(1,1)原理及Python实现

目录 一、GM&#xff08;1&#xff0c;1&#xff09;模型预测原理 二、GM&#xff08;1&#xff0c;1&#xff09;模型预测步骤 2.1 数据的检验与处理 2.2 建立模型 2.3 检验预测值 三、案例 灰色预测应用场景&#xff1a;时间序列预测 灰色预测的主要特点是模型使用的…

基于OpenCV灰度图像转GCode的斜向扫描实现

基于OpenCV灰度图像转GCode的斜向扫描实现基于OpenCV灰度图像转GCode的斜向扫描实现 引言激光雕刻简介OpenCV简介实现步骤 1.导入必要的库2. 读取灰度图像3. 图像预处理4. 生成GCode5. 保存生成的GCode6. 灰度图像斜向扫描代码示例 总结 系列文章 ⭐深入理解G0和G1指令&…

Python 深入理解 os 和 sys 模块

Python 深入理解 os 和 sys 模块 OS 介绍代码智能连接&#xff08;拼接&#xff09;路径创建目录展示&#xff08;列出目录&#xff09;删除文件重命名文件或目录 sys 介绍代码命令行参数处理 (sys.argv)标准输入输出重定向 (sys.stdin, sys.stdout, sys.stderr)&#xff1a;解…

数据结构 - 线索树

一、 为什么要用到线索二叉树&#xff1f; 我们先来看看普通的二叉树有什么缺点。下面是一个普通二叉树&#xff08;链式存储方式&#xff09;&#xff1a; 乍一看&#xff0c;会不会有一种违和感&#xff1f;整个结构一共有 7 个结点&#xff0c;总共 14 个指针域&#xff0c…

WordPress函数wptexturize的介绍及用法示例,字符串替换为HTML实体

在查看WordPress你好多莉插件时发现代码中使用了wptexturize()函数用来随机输出一句歌词&#xff0c;下面boke112百科就跟大家一起来学习一下WordPress函数wptexturize的介绍及用法示例。 WordPress函数wptexturize介绍 wptexturize( string $text, bool $reset false ): st…

HarmonyOS class类对象基础使用

按我们之前的写法 就是 Entry Component struct Dom {p:Object {name: "小猫猫",age: 21,gf: {name: "小小猫猫",age: 18,}}build() {Row() {Column() {// ts-ignoreText(this.p.gf.name)}.width(100%)}.height(100%)} }直接用 Object 一层一层往里套 这…

C++进阶(十三)异常

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、C语言传统的处理错误的方式二、C异常概念三、异常的使用1、异常的抛出和捕获2、异常的重新…

网络学习:数据链路层VLAN原理和配置

一、简介&#xff1a; VLAN又称为虚拟局域网&#xff0c;它是用来将使用路由器的网络分割成多个虚拟局域网&#xff0c;起到隔离广播域的作用&#xff0c;一个VLAN通常对应一个IP网段&#xff0c;不同VLAN通常规划到不同IP网段。划分VLAN可以提高网络的通讯质量和安全性。 二、…

跟着小德学C++之TCP基础

嗨&#xff0c;大家好&#xff0c;我是出生在达纳苏斯的一名德鲁伊&#xff0c;我是要立志成为海贼王&#xff0c;啊不&#xff0c;是立志成为科学家的德鲁伊。最近&#xff0c;我发现我们所处的世界是一个虚拟的世界&#xff0c;并由此开始&#xff0c;我展开了对我们这个世界…

红队打靶练习:GLASGOW SMILE: 1.1

目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 /how_to.txt /joomla CMS利用 1、爆破后台 2、登录 3、反弹shell 提权 系统信息收集 rob用户登录 abner用户 penguin用户 get root flag 信息收集…