图像处理入门:OpenCV的基础用法解析

图像处理入门:OpenCV的基础用法解析

    • 引言
    • OpenCV的初步了解
      • 深入理解OpenCV:计算机视觉的开源解决方案
        • 什么是OpenCV?
        • OpenCV的主要功能
          • 1. 图像处理
          • 2. 图像分析
          • 3. 结构分析和形状描述
          • 4. 动态分析
          • 5. 三维重建
          • 6. 机器学习
          • 7. 目标检测
        • OpenCV的应用场景
      • OpenCV的安装
    • 基本图像操作
      • 图像的读取与显示
      • 图像的基本信息
      • 图像的保存
    • 图像处理技巧
      • 图像转换
      • 边缘检测
      • 特征检测与匹配

引言

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV 支持多种编程语言,如 C++、Python、Java 等,并可在不同的操作系统上运行。在图像处理和计算机视觉领域中有着广泛应用。
在这里插入图片描述

OpenCV的初步了解

深入理解OpenCV:计算机视觉的开源解决方案

深入理解OpenCV:计算机视觉的开源解决方案

    • 引言
    • OpenCV的初步了解
      • 深入理解OpenCV:计算机视觉的开源解决方案
        • 什么是OpenCV?
        • OpenCV的主要功能
          • 1. 图像处理
          • 2. 图像分析
          • 3. 结构分析和形状描述
          • 4. 动态分析
          • 5. 三维重建
          • 6. 机器学习
          • 7. 目标检测
        • OpenCV的应用场景
      • OpenCV的安装
    • 基本图像操作
      • 图像的读取与显示
      • 图像的基本信息
      • 图像的保存
    • 图像处理技巧
      • 图像转换
      • 边缘检测
      • 特征检测与匹配

什么是OpenCV?

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV是专为实现高效的视觉处理和实现普及化而设计的,它广泛应用于公司的产品和服务、研究团队和政府部门。

OpenCV的主要功能
1. 图像处理

包括滤波、色彩空间转换、图像缩放、边缘检测、形态学操作等。

2. 图像分析

例如特征检测、描述和匹配、轮廓发现、直方图等。

3. 结构分析和形状描述

这包括霍夫变换、分水岭算法等。

4. 动态分析

包括光流法、背景分割等技术。

5. 三维重建

例如立体匹配、基于特征的3D重建等。

6. 机器学习

OpenCV还包含了一些机器学习算法,比如SVM、决策树、K-均值等。

7. 目标检测

可以进行脸部检测、人眼检测、行人检测等。

OpenCV的应用场景
  • 自动驾驶车辆:车道检测、交通标识识别。
  • 安防监控:运动检测、入侵者检测。
  • 健康医疗:辅助疾病诊断、手术导航。
  • 交互应用:手势识别、人机互动。
  • 工业自动化:缺陷检测、质量控制。

OpenCV的安装

要使用OpenCV,首先需要进行安装。以Python为例,可以通过pip命令轻松安装:

pip install opencv-python

基本图像操作

图像的读取与显示

import cv2# 读取图片
image = cv2.imread('example.jpg')# 显示图片
cv2.imshow('Image', image)# 等待任意键盘按键
cv2.waitKey(0)# 关闭所有窗口
cv2.destroyAllWindows()

图像的基本信息

print('宽度: {} pixels'.format(image.shape[1]))
print('高度: {} pixels'.format(image.shape[0]))
print('通道: {}'.format(image.shape[2]))

图像的保存

# 保存图像
cv2.imwrite('new_image.jpg', image)

图像处理技巧

图像转换

如灰度转换、二值化等:

# 灰度转换
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, threshold_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY)

边缘检测

使用Canny算法进行边缘检测:

canny_edges = cv2.Canny(gray_image, 100, 200)

特征检测与匹配

基于ORB算法的特征点检测和特征点匹配:

# 初始化ORB检测器
orb = cv2.ORB_create()# 寻找关键点
keypoints, descriptors = orb.detectAndCompute(gray_image, None)# 画出关键点
keypoint_image = cv2.drawKeypoints(image, keypoints, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/674463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣热题100_哈希_49_字母异位词分组

文章目录 题目链接解题思路解题代码 题目链接 49. 字母异位词分组 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs [“eat”, “tea”, “ta…

LeetCode魔塔游戏

题目描述 小扣当前位于魔塔游戏第一层,共有 N 个房间,编号为 0 ~ N-1。每个房间的补血道具/怪物对于血量影响记于数组 nums,其中正数表示道具补血数值,即血量增加对应数值;负数表示怪物造成伤害值,即血量减…

Java学习day30:Stream流入门、集合获取流对象、流对象的方法(知识点详解)

声明:该专栏本人重新过一遍java知识点时候的笔记汇总,主要是每天的知识点题解,算是让自己巩固复习,也希望能给初学的朋友们一点帮助,大佬们不喜勿喷(抱拳了老铁!) 往期回顾 Java学习day29:线程池…

LeetCode--455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j]…

java_error_in_pycharm.hprof文件是什么?能删除吗?

java_error_in_pycharm.hprof文件是什么?能删除吗? 🌵文章目录🌵 🌳引言🌳🌳hprof格式文件介绍🌳🌳java_error_in_pycharm.hprof文件什么情况下能删除🌳&…

Transformer实战-系列教程11:SwinTransformer 源码解读4(WindowAttention类)

🚩🚩🚩Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 点我下载源码 SwinTransformer 算法原理 SwinTransformer 源码解读1(项目配置/SwinTr…

php 函数三

一 对称加密 1.1 openssl 1.1.1 openssl_get_cipher_methods(bool $aliases false) 获取可用的加密算法。包含可用加密算法的array。 请注意:在 OpenSSL 1.1.1 版本之前,返回加密算法的拼法大小写都有; 从 OpenSSL 1.1.1 开始&#xff0c…

【机器学习】数据清洗之识别缺失点

🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步…

Linux笔记之expect和bash脚本监听输出并在匹配到指定字符串时发送中断信号

Linux笔记之expect和bash脚本监听输出并在匹配到指定字符串时发送中断信号 code review! 文章目录 Linux笔记之expect和bash脚本监听输出并在匹配到指定字符串时发送中断信号1.expect2.bash 1.expect 在Expect脚本中,你可以使用expect来监听程序输出,…

Github 2024-02-08 开源项目日报 Top9

根据Github Trendings的统计,今日(2024-02-08统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Ruby项目1HTML项目1Python项目1Scala项目1PLpgSQL项目1Rust项目1NASL项目1C项目1TypeScript项目1非开发语言项目…

谷歌seo搜索引擎优化有什么思路?

正常做seo哪有那么多思路,其实就那么几种方法,无非就关键词,站内优化,外链,可以说万变不离其宗,但如果交给我们,你就可以实现其他的思路,或者说玩法 收录可以说是一个网站的基础&…

【Linux】vim的基本操作与配置(下)

Hello everybody!今天我们继续讲解vim的操作与配置,希望大家在看过这篇文章与上篇文章后都能够轻松上手vim! 1.补充 在上一篇文章中我们说过了,在底行模式下set nu可以显示行号。今天补充一条:set nonu可以取消行号。这两条命令大家看看就可…

10个常考的前端手写题,你全都会吗?(上)

前言 📫 大家好,我是南木元元,热爱技术和分享,欢迎大家交流,一起学习进步! 🍅 个人主页:南木元元 今天来分享一下10个常见的JavaScript手写功能。 目录 1.实现new 2.call、apply、…

[office] excel表格怎么绘制股票的CCI指标- #媒体#学习方法#笔记

excel表格怎么绘制股票的CCI指标? excel表格怎么绘制股票的CCI指标?excel表格中想要绘制一个股票cci指标,该怎么绘制呢?下面我们就来看看详细的教程,需要的朋友可以参考下 CCI指标是一种在股票,贵金属,货…

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型

文章目录 6.2 最大熵模型6.2.1 最大熵原理6.2.3 最大熵模型的学习6.2.4 极大似然估计 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法 《统计学习方法:李航》笔记 从原理到实现(基于python&am…

Mysql报错:too many connections

1 问题原因 MySQL报错“too many connections”通常是由于数据库的最大连接数超过了MySQL配置的最大限制。有以下几个原因: (1)访问量过高:当MySQL服务器面对大量的并发请求时,已经建立的连接数可能会不足以处理所有的请求,从而导致连接池耗尽、连接被拒绝、出现“too …

VMware17上安装centos7.9成功后,进入linux命令行以后,运行没几分钟直接卡死,或者说非常卡

VMware17上安装centos7.9成功后,进入linux命令行以后,运行没几分钟直接卡死,或者说非常卡 解决方案:关闭windows的Hyper-V服务,重启虚拟机

Biu懂AI:Object Detection训练数据的Label格式

Bui~ 新系列博文将专注AI相关领域,想要学习高通蓝牙相关知识请查看之前的系列或关注大博主声波电波就看今朝 在CV(computer vision)中,Object detection是其中的一个核心任务,它可以在输入图像或视频中识别并框出目标。…

Rust 初体验2

变量类型 Rust 语言的变量数据类型,主要包括整型、浮点型、字符、布尔型、元组、数组、字符串、枚举、结构体和可变变量等。 fn main() { // 整型 let integer: i32 100; println!("整型: {}", integer); // 浮点型 let floating_point: f64 3.1…

15.2 Linux入门(❤❤❤❤)

15.2 Linux入门 1. Linux基础1.1 基础概念1. 操作系统2. Linux操作系统3. CentOS操作系统1.2 CentOS安装配置1. 运行要求2. 虚拟机与CentOS安装1.3 Linux目录结构1.4 Linux远程管理配置2. Linux高级操作2.1 命令:vim文本编辑器(❤❤)2.2 命令:常用文本工具(❤❤)1. echo命令<