数据结构中的时间复杂度和空间复杂度基础

目录

数据结构

数据结构中的基本名词

数据

数据对象

数据元素

数据项

数据类型

数据对象、数据元素和数据项之间的关系

数据结构及分类

逻辑结构

物理结构

算法

算法的特点

算法设计上的要求

算法效率的衡量

时间复杂度

大O渐进表示法

最坏情况和平均情况

常见的时间复杂度计算

常数阶

线性阶

求和

倍数

对数阶

次方阶

等差数列(平方阶)

等比数列(次方阶)

空间复杂度

常见的空间复杂度计算

常数阶(仅常数个存储单元开辟)

线性阶(主要分析递归)


数据结构

数据结构中的基本名词

数据

描述客观事物的符号,是计算机中可以操作的对象,是能被计算机识别,并输入给计算机处理的符号集合,例如整型数据、字符数据、图片数据、音频数据

数据对象

性质相同的数据元素的集合,是数据的子集,因为是数据的子集,数据包括各种类型,而数据对象指的是具体的某一种类型,所以数据对象也可以简称为数据

数据元素

组成数据的、有一定意义的基本单位,在计算机中通常作为整体处理,也被称为记录

数据项

一个数据元素可以由若干个数据项组成,数据项是数据中不可分割的最小单位

数据类型

一组性质相同的值的集合及定义在此集合上的一些操作的总称,例如表格的整型是整数的集合

抽象数据类型:

一个数学模型以及定义在该模型上的一组操作,既包括以及定义并实现的数据类型,也包括自定义类型和对应的实现方法

数据对象、数据元素和数据项之间的关系

//定义数据,这个数据中包含两个数据对象//第一个数据对象
struct Person
{int age;//数据项char name[20];//数据项
}//第二个数据对象
struct lessons
{char lesson[20];//数据项int credits;//数据项
}//使用两个数据对象分别创建两个数据元素
//第一组数据元素
struct Person Peter = {20, "Peter"};
struct Person Mark = {18, "Mark"};
//第二组数据元素
struct Lesson_P = {"English", 2};
struct Lesson_M = {"Mathematics", 2};

数据[struct Person struct lessons]

数据对象[struct Person struct lessons]

数据元素[PeterMark]

数据元素[Lesson_PLesson_M]

数据项

[整型:age]

数据项

[字符数组类型:name]

数据项

[字符数组类型:lesson]

数据项

[整型:credits]

数据结构及分类

结构:不同数据元素之间不是独立的,而是存在特定的关系,这些关系称为结构

数据结构:在计算机中存储、组织数据的方式,相互之间存在一种或多种特定关系的数据元素的集合。主要是在内存中管理数据,基本的管理方式有:增加数据元素、删除数据元素、查找数据元素和修改数据元素


数据结构可以分为:逻辑结构和物理结构

逻辑结构

数据对象中数据元素之间的相互关系

逻辑结构包括:

  1. 集合结构:集合结构中的数据元素除了同属于一个集合外,没有其他关系
  2. 线性结构:线性结构中的数据元素之间是一对一的关系
  3. 树形结构:树形结构中的数据元素之间存在一对多的层次关系
  4. 图形结构:图形结构的数据元素是多对多的关系
物理结构

指数据的逻辑结构在计算机中的实际存储形式

物理结构包括:

  1. 顺序存储结构:把数据元素存放在地址必然连续的存储单元(内存)里,其数据间的逻辑关系和物理关系一致
  2. 链式存储结构:把数据元素存放在任意的存储单元(内存)里,而这些存储单元可以连续也可以不连续

📌

逻辑结构是面向问题的,而物理结构就是面向计算机的,其基本的目标就是将数据及其逻辑关系存储到计算机的内存中

算法

算法:就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为

输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果

算法的特点

  1. 输入输出特点:
    1. 对于输入:算法可以没有输入和多个输入
    2. 对于输出:算法至少有一个或多个输出
  2. 有穷性:算法在执行有限的步骤之后,自动结束而不会出现死循环,并且每个步骤在可接受的时间内完成
  3. 确定性:算法的每一步骤都具有确定的含义,不会出现二义性,即相同的输入只有唯一的输出结果
  4. 可行性:算法的每一步都必须是可行的,即每一步都能通过执行有限次数完成

算法设计上的要求

  1. 正确性:正确性:算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性,能正确反映问题的需求,能够得到问题的正确答案
  2. 可读性:算法设计的另一目的是为了便于阅读、理解和交流
  3. 健壮性:当输入数据不合法时,算法也能做出相关处理,而不是产生异常或莫名其妙的结果
  4. 时间效率高和存储量低

算法效率的衡量

衡量一个程序的好坏,一般从时间和空间两个维度进行衡量,即时间复杂度和空间复杂度

在程序中,时间复杂度主要衡量一个算法的运行快慢,空间复杂度主要衡量一个算法运行所需要的额外空间

时间复杂度

在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

在计算时间复杂度时,通常不需要计算出精确的执行次数,只需要计算大概执行的次数,故在计算时采用大O的渐进表示法

大O渐进表示法

大O符号(Big O notation):是用于描述数学函数渐进行为的数学符号

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶

例如,对于下面的C语言代码,试计算出下面代码的时间复杂度

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

不计算创建变量和打印语句,直观准确来计算时,大概率得出一个公式,即

f(n)={​{n}^{2}}+n+10

但是,时间复杂度计算的是一个估计值,也就是说,我们不需要完全准确地将代码执行次数计算出来,对于上面的表达式,由于N^{_{2}}的增长速度要大于n,当n→+∞时,n对函数整体计算出来的值影响并不大,故取N^{_{2}},而不是取n,另外在计算时间复杂度时,加法常数一般是忽略不计的

所以,上面代码在计算时间复杂度时,只需要取出N^{_{2}}即可,即O(N^{_{2}})

最坏情况和平均情况

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:\frac{N}{2}次找到

📌

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

常见的时间复杂度计算

常数阶

void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

在上面的代码中,代码的运行次数,不计算创建变量和打印语句,共运行了100次,在计算平均复杂度时,因为100为常数次,故时间复杂度为O(1)

📌

计算时间复杂度时,不论常数是多少都记作O(1),不能是其他数字

线性阶

求和
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

上面的代码中,第一个for循环和第二个for循环分开进行,故最后时间复杂度为O(M+N)

📌

注意时间不可以共享,只能累积

long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

上述代码是个函数递归,由于计算时间复杂度时计算的是代码执行的次数,故此处时间复杂度即为递归次数,取决于N,故此代码时间复杂度为O(N)

📌

注意,这里实际代码执行的次数为N+1次,例如N = 5时,有

Fac(5)Fac(4)Fac(3)Fac(2)Fac(1)Fac(0),递归结束后再返回,故调用了6次

但是在计算时间复杂度时忽略常数,故时间复杂度为O(N)

倍数
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

上面的代码中,在计算时间复杂度时,可能开始计算时答案为O(2N+M),但是注意,在计算时间复杂度时,不需要最高次项的系数和常数,尽管这里的M是变量,但是变量中已经给了常量10,所以变量M算作常量,可以去掉,故本题时间复杂度为O(N)

对数阶

int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

上面的代码是二分查找算法,二分查找的原理是在有序的数组中查找数据,找不到就进行折半操作

//对于数组
int nums[10] = { 1,5,9,10,15,20,21,30,35,45 };

在进行第一次查找过程中,数组元素个数为10,第二次查找数组元素个数为5,第三次查找数组元素个数为2,即元素个数n与代码执行次数x成对数关系,每一次少一半,也就是除以2,即多少次折半对应多少个元素,即 {​{2}^{x}}= n,以上面的数组为例,当前10个元素,则有等式{​{2}^{x}} = 10,故x≈3,最坏情况下三次才能找到那么x对应的就是代码执行次数,即时间复杂度,故二分查找的时间复杂度为O(\log_{2}{N})(注意此处的N为元素个数)

次方阶

等差数列(平方阶)
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

上面的代码中为冒泡排序算法,,而冒泡排序每一趟都会将满足条件的数值放到合适的位置,如果有10个元素,那么就要进行9次冒泡才可以将该数值放置在对应的位置

📌

例如上面图中每一趟冒泡排序都将需要的数值放置在数组的最后一个元素的位置,共需要9趟冒泡排序

而冒泡排序的原理是不满足条件进行两两交换,每一趟排序中,如果只有两个元素,则只需要交换1次,三个元素只需要交换两次,那么n个元素就只需要进行n-1次,故外层循环实际上执行了n-1次,而内层循环随着外层循环执行次数的增长时逐渐减少,也就是两两交换的次数就逐渐减少

📌

例如上面图中每一趟冒泡排序中两两交换的次数都在随着趟数的增加而逐渐减少

所以,在计算时间复杂度时,可以看到10个元素时,第一趟冒泡排序执行了9次,第二趟冒泡排序执行了8次,以此类推,最后一趟冒泡排序执行了1次,故总共执行次数为9+8+7+6+5+4+3+2+1 =\frac{(9+1)\ast 9}{2} = 45(其中9和1即首项和尾项,*9中的9为冒泡排序的趟数)。

故当有n个元素进行冒泡排序时,第一趟冒泡排序需要执行n-1次,第二趟执行n-2次,以此类推,最后一趟还是1次,总共执行次,因为最高此时为\frac{(n-1+1)×(n-1)}{2}=\frac{n(n-1)}{2},并且需要去掉系数故最后时间复杂度为O({​{N}^{2}})

等比数列(次方阶)
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

推荐使用二叉树进行分析,此处暂不做分析,给出答案为时间复杂度为O({​{2}^{N}})

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度,在计算时也使用大O渐进表示法

📌

函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定,例如变量的个数以及动态内存开辟的空间

常见的空间复杂度计算

常数阶(仅常数个存储单元开辟)

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

上面代码中,由于创建了变量,但是数量是常数个,故空间复杂度为O(1)

long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

上面代码中,使用了malloc函数开辟了n+1个空间,故空间复杂度为O(N)

线性阶(主要分析递归)

long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

上面代码中,因为每次函数调用需要开辟函数栈帧,从而消耗了空间,而开辟的空间有N的个数决定,实际开辟了N+1个空间,故空间复杂度为O(N)

long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

推荐使用二叉树进行分析,此处暂不做分析,空间复杂度为O(N)

📌

注意时间需要累积,但是空间可以共享

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/672764.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R语言学习case10:ggplot基础画图Parallel Coordinate Plot 平行坐标图

step1: 导入ggplot2库文件 library(ggplot2)step2&#xff1a;带入自带的iris数据集 iris <- datasets::irisstep3&#xff1a;查看数据信息 dim(iris)维度为 [150,5] head(iris)查看数据前6行的信息 step4&#xff1a;利用ggplot工具包绘图 plot5 <- ggparcoord(…

Pandas数据预处理之数据标准化-提升机器学习模型性能的关键步骤【第64篇—python:数据预处理】

文章目录 Pandas数据预处理之数据标准化&#xff1a;提升机器学习模型性能的关键步骤1. 数据标准化的重要性2. 使用Pandas进行数据标准化2.1 导入必要的库2.2 读取数据2.3 数据标准化 3. 代码解析4. 进一步优化4.1 最小-最大缩放4.2 自定义标准化方法 5. 处理缺失值和异常值5.1…

HGAME 2024 WEEK 1 :web ezHTTP

题目&#xff1a; 看到这个就知道是文件头伪造 第一想法就是Referer伪造 所以伪造 Referer: vidar.club 然后构造伪造的Referer 然后提示通过那些东西访问页面&#xff0c;User-Agent: 是构造你浏览器访问信息的&#xff0c;所以复制右边那一串替代就好了 然后要求我们从本地…

STM32Cubmax stm32f103zet6 SPI通讯

一、基本概念 SPI 是英语 Serial Peripheral interface 的缩写&#xff0c;顾名思义就是串行外围设备接口。是 Motorola 首先在其 MC68HCXX 系列处理器上定义的。 SPI 接口主要应用在 EEPROM&#xff0c; FLASH&#xff0c;实时时 钟&#xff0c; AD 转换器&#xff0c;还有数…

【Linux系统化学习】文件描述符fd

目录 基础IO预备知识 C语言文件接口 "w"的方式打开&#xff0c;fputs写入 以"a"的方式打开&#xff0c;fputs写入 使用位图传参 系统调用操作文件 open的使用 第一种形式 第二种形式 write() 文件描述符 文件描述符和进程的关系 默认的三个IO流…

C语言:函数递归

创作不易&#xff0c;给个三连吧&#xff01;&#xff01; 一、什么是递归 递归式一种解决问题的方法&#xff0c;在C语言中&#xff0c;递归就是自己调用自己。 递归的思想&#xff1a; 把⼀个⼤型复杂问题层层转化为⼀个与原问题相似&#xff0c;但规模较小的⼦问题来求解…

考研数据结构笔记(2)

线性表 线性表的定义线性表的基本操作lnitList(&L)DestroyList(&L)Listlnsert(&L,i,e)ListDelete(&L,i,&e)LocateElem(L,e)GetElem(L,i)Length(L)PrintList(L)Empty(L)Tips:引用值 小结 根据数据结构的三要素–逻辑结构、数据的运算、存储结构&#xff0c;…

嵌入式学习Day14 C语言 --- 位运算

位运算 注意&#xff1a;符号位也遵循这个规则 一、按位与(&) 运算规则&#xff1a;一假则假 int a 0x33;a & 0x55;0011 00110101 0101 &----------0001 0001 //0x11 二、按位或(|) 运算规则&#xff1a;一真则真 int a 0x33;a |0x55;0011 00110101 0101 |…

Asp .Net Core 集成 NLog

简介 NLog是一个基于.NET平台编写的日志记录类库&#xff0c;它可以在应用程序中添加跟踪调试代码&#xff0c;以便在开发、测试和生产环境中对程序进行监控和故障排除。NLog具有简单、灵活和易于配置的特点&#xff0c;支持在任何一种.NET语言中输出带有上下文的调试诊断信息…

Python 数据分析库之polars使用详解

概要 数据分析是现代应用程序和业务决策的关键组成部分。Python 作为一门强大的编程语言,拥有丰富的数据处理库和工具,其中之一就是 Polars。Polars 是一个现代化的数据操作和分析库,它提供了高性能的数据操作功能,支持链式方法调用,并且兼容 Pandas 和 Arrow 格式。本文…

微信小程序合集更更更之实现仿网易云播放动效

实现效果 写在最后&#x1f352; 源码&#xff0c;关注&#x1f365;苏苏的bug&#xff0c;&#x1f361;苏苏的github&#xff0c;&#x1f36a;苏苏的码云~

鸿蒙开发-UI-组件导航-Tabs

鸿蒙开发-UI-组件 鸿蒙开发-UI-组件2 鸿蒙开发-UI-组件3 鸿蒙开发-UI-气泡/菜单 鸿蒙开发-UI-页面路由 鸿蒙开发-UI-组件导航-Navigation 文章目录 一、基本概念 二、导航 1.底部导航 2.顶部导航 3.侧边导航 4.导航栏限制滑动 三、导航栏 1.固定导航栏 2.滚动导航栏 3…

写后台接口,前后台数据对接(vue+springboot)

一、怎么写接口&#xff1f;&#xff1f;&#xff1f; 1.Entity&#xff08;定义一堆属性之类的&#xff09; altins>getter和setter方法 2.Controller 3.Service&#xff08;查询出数据&#xff09; 调用了一个方法 4.Mapper 5.回到service&#xff08;返回数据&#x…

2024年微信公众号链接爬取

通过输入&#xff08;或文件导入&#xff09;公众号名称&#xff0c;即可爬取该公众号所有历史文章。 通过公众号官方网站调用API&#xff0c;打开开发者工具后发现有 打开后发现有搜索结果的fakeid&#xff0c;这是每个公众号的标识。 点击某公众号后出现 这是具体公众号文章…

Windows中如何使用 Anaconda 和 gempy地质建模

GemPy是一个免费开源的Python软件包&#xff0c;主要用于建立三维地质模型。以下是windows下GemPy的安装过程。 一、&#xff08;可选步骤&#xff09;N卡加速 如果使用的是英伟达的RTX显卡&#xff0c;可以去N卡官网下载cuda安装包以启用GPU加速。 首先检查显卡支持的CUDA版…

二层交换机配置以太网通道

实验大纲 二层聚合端口配置 1.构建网络拓扑结构图 2.修改交换机名字 3.创建聚合组进入聚合接口模式 4.将端口绑定到聚合端口&#xff08;接口模式&#xff09; 5.聚合接口下端口配置&#xff08;聚合接口模式) 6.具体配置 7.验证端口通道1的状态 8.配置ip 9.测试连通…

外汇天眼:欧洲证券和市场管理局(ESMA)撤销对迪拜商品清算公司的欧盟认可

欧洲证券与市场管理局&#xff08;ESMA&#xff09;宣布&#xff0c;欧洲监管机构&#xff08;EBA、EIOPA和ESMA - 即ESA的联合上诉委员会&#xff09;一致决定驳回迪拜商品清算公司&#xff08;DCCC&#xff09;对ESMA提起的上诉&#xff0c;并因此确认ESMA决定撤销其认可。DC…

分析网站架构:浏览器插件

一、Wappalyzer 1.1 介绍 Wappalyzer 是一款用于识别网站所使用技术栈的浏览器插件。它能够分析正在浏览的网页&#xff0c;检测出网站所使用的各种技术和框架&#xff0c;如内容管理系统&#xff08;CMS&#xff09;、JavaScript库、Web服务器等。用户只需安装 Wappalyzer 插…

春节放大招,阿里通义千问Qwen1.5开源发布

2月6日阿里发布了通义千问1.5版本&#xff0c;包含6个大小的模型&#xff0c;“Qwen” 指的是基础语言模型&#xff0c;而 “Qwen-Chat” 则指的是通过后训练技术如SFT&#xff08;有监督微调&#xff09;和RLHF&#xff08;强化学习人类反馈&#xff09;训练的聊天模型。 模型…

113.乐理基础-五线谱-五线谱的调号(二)

内容参考于&#xff1a;三分钟音乐社 上一个内容&#xff1a;五线谱的调号&#xff08;一&#xff09;-CSDN博客 调号一共有15个&#xff1a;如下图 上一个内容里写了&#xff0c;C、D、E、F、G、A、B这七个调号&#xff0c;如下图 然后所有调号的五线谱版本&#xff1a; 然后…