YOLOV7 添加 CBAM 注意力机制

用于学习记录

文章目录

  • 前言
  • 一、CBAM
    • 1.1 models/common.py
    • 1.2 models/yolo.py
    • 1.3 yolov7/cfg/training/CBAM.yaml
    • 2.4 CBAM 训练结果图


前言


一、CBAM

CBAM: Convolutional Block Attention Module

1.1 models/common.py

class ChannelAttention(nn.Module):def __init__(self, in_planes, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)self.relu = nn.ReLU()self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))max_out = self.f2(self.relu(self.f1(self.max_pool(x))))out = self.sigmoid(avg_out + max_out)return outclass SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv(x)return self.sigmoid(x)class CBAM(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper(CBAM, self).__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.Hardswish() if act else nn.Identity()self.ca = ChannelAttention(c2)self.sa = SpatialAttention()def forward(self, x):x = self.act(self.bn(self.conv(x)))x = self.ca(x) * xx = self.sa(x) * xreturn xdef fuseforward(self, x):return self.act(self.conv(x))

1.2 models/yolo.py

搜索 if m in 添加以下代码 CBAM

        if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC, SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv, Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,  Res, ResCSPA, ResCSPB, ResCSPC, RepRes, RepResCSPA, RepResCSPB, RepResCSPC, ResX, ResXCSPA, ResXCSPB, ResXCSPC, RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC, Ghost, GhostCSPA, GhostCSPB, GhostCSPC,SwinTransformerBlock, STCSPA, STCSPB, STCSPC,SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC, C3, CBAM]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [DownC, SPPCSPC, GhostSPPCSPC, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, ResCSPA, ResCSPB, ResCSPC, RepResCSPA, RepResCSPB, RepResCSPC, ResXCSPA, ResXCSPB, ResXCSPC, RepResXCSPA, RepResXCSPB, RepResXCSPC,GhostCSPA, GhostCSPB, GhostCSPC,STCSPA, STCSPB, STCSPC,ST2CSPA, ST2CSPB, ST2CSPC, C3]:args.insert(2, n)  # number of repeatsn = 1

1.3 yolov7/cfg/training/CBAM.yaml

# parameters
nc: 60  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True# [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2 [[-1, 1, CBAM, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  #  [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4  [-1, 1, CBAM, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7[-1, 1, MP, []],  # 8-P3/8[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14[-1, 1, MP, []],  # 15-P4/16[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21[-1, 1, MP, []],  # 22-P5/32[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28]# yolov7-tiny head
head:[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, SP, [5]],[-2, 1, SP, [9]],[-3, 1, SP, [13]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -7], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 47], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 37], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[74,75,76], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)]

2.4 CBAM 训练结果图

在这里插入图片描述
在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我的私人笔记(安装hbase)

在安装前需要安装好JDK、Hadoop以及Zookeeper,JDK版本为1.8、Hadoop版本为2.7.4以及Zookeeper的版本为3.4.10。 4.1.下载 下载地址:Index of /dist/hbase 本次学习版本为: hbase-1.2.1-bin.tar.gz 4.2.安装步骤 上传安装包至hadoop01节点…

持续集成与持续交付(CI/CD):探讨在云计算中实现快速软件交付的最佳实践

文章目录 持续集成(CI)的最佳实践持续交付(CD)的最佳实践云计算环境下的特别注意事项 🎈个人主页:程序员 小侯 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏&am…

UDP和TCP的区别

UDP (User Datagram Protocol) 和 TCP (Transmission Control Protocol) 是两种常见的传输层协议。它们在设计和用途上有很大的区别,以下是它们的主要差异: 连接性: TCP: 是一个连接导向的协议。它首先需要建立连接,数据传输完毕后再终止连接…

Java设计模式:四、行为型模式-08:策略模式

文章目录 一、定义:策略模式二、模拟场景:策略模式三、违背方案:策略模式3.0 引入依赖3.1 工程结构3.2 优惠券折扣计算类3.3 单元测试 四、改善代码:策略模式4.1 工程结构4.2 策略模式结构图4.3 优惠券折扣实现4.3.1 定义优惠券接…

监控Spark运行超时及kill掉重跑

在用oozie的调度任务,用shell调度spark任务,在生产环境运行时,正常1-2个小时跑完的任务,有时出现跑了5、6个小时还没跑完,造成的原因很奇怪,有可能是数据倾斜,任务占用太多资源偶尔出错。为了监…

2023年08月个人工作生活总结

本文为 2023 年 8 月工作生活总结。 研发编码 Go 某工程,有多个协程,不同协程,最终按需要可能会调同一个C写的动态库(用C做了一层封装),测试发现,在等待协程结束后,概率性出现较耗…

音频修复和增强工具 iZotope RX 10 for mac激活最新

iZotope RX 10是一款音频修复和增强软件,主要特点包括: 声音修复:iZotope RX 10可以去除不良噪音、杂音、吱吱声等,使音频变得更加清晰干净。音频增强:iZotope RX 10支持对音频进行音量调节、均衡器、压缩器、限制器等…

Large Language Models and Knowledge Graphs: Opportunities and Challenges

本文是LLM系列的文章,针对《Large Language Models and Knowledge Graphs: Opportunities and Challenges》的翻译。 大语言模型和知识图谱:机会与挑战 摘要1 引言2 社区内的共同辩论点3 机会和愿景4 关键研究主题和相关挑战5 前景 摘要 大型语言模型&…

深入理解作用域、作用域链和闭包

​ 🎬 岸边的风:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想,就是为了理想的生活 ! ​ 目录 📚 前言 📘 1. 词法作用域 📖 1.2 示例 📖 1.3 词法作用域的…

数学建模--二次规划型的求解的Python实现

目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 #二次规划模型 #二次规划我们需要用到函数:Cvxopt.solvers.qp(P,q,G,h,A,b) #首先解决二次规划问题和解决线性规划问题的流程差不多 """ 求解思路如下: 1.针对给定的代求式,转化成标准式…

本地部署体验LISA模型(LISA≈图像分割基础模型SAM+多模态大语言模型LLaVA)

GitHub地址:https://github.com/dvlab-research/LISA 该项目论文paper reading:https://blog.csdn.net/Transfattyacids/article/details/132254770 在GitHub上下载源文件,进入下载的文件夹,打开该地址下的命令控制台,…

spring boot 项目中搭建 ElasticSearch 中间件 一 postman 操作 es

postman 操作 es 1. 简介2. 环境3. postman操作索引3.1 创建索引3.2 查看索引3.3 查看所有索引3.4 删除索引 4. postman操作文档4.1 添加文档4.2 查询文档4.3 查询全部文档4.4 更新文档4.5 局部更新文档4.6 删除文档4.7 条件查询文档14.8 条件查询文档24.9 条件查询文档 limit4…

电动汽车电机驱动系统的组成和作用

1.电机驱动系统的作用与组成电动汽车电机驱动系统是新能源汽车的核心技术之一,它的主要任务是按驾驶员的驾驶意图,将动力电池的化学能高效地转化为机械能,经过变速器、驱动轴等机构驱动车轮。电动机驱动系统主要有电动机、功率器件和控制系统…

消灭怪物的最大数量【力扣1921】

一、题目分析 需要满足的条件: 只能在每分钟的开始使用武器武器能杀死距离城市最近的怪兽怪兽到达城市就会输掉游戏 游戏最优策略:我们可以在每分钟的开始都使用一次武器,用来杀死距离城市最近的怪兽。这样可以在力所能及的范围内&#xf…

Android BottomNavigationView 禁用Toast提示的方法

废话不多说直接上代码&#xff1a; private void disableNavViewLongClick(BottomNavigationView bottomNavigationView){assert bottomNavigationView ! null;final int childCount bottomNavigationView.getChildCount();if(childCount<0){return;}final View childAtVie…

mp代码生成插件

mp代码生成插件 1.下载下面的插件 2.连接测试 3.生成代码的配置 4.生成代码 红色的是刚刚生成的。 我觉得不如官方的那个好用&#xff0c;唯一的好处就是勾选的选项能够看的懂得。

关于uniapp报警告Extraneous non-props attributes (info) were passed to component

Extraneous non-props attributes (info) were passed to component but could not be automatically inherited because component renders fragment or text root nodes. 在开发uniapp的过程中&#xff0c;遇到了这咩一个问题&#xff0c;如上面所述&#xff0c;也是感觉哪哪…

记录深度学习常用指令(一)

一、创建Conda虚拟Python环境 conda create -n [仓库名字] python[版本]二、激活环境 conda activate [仓库名字]三、安装PyTorch PyTorch官方 GPU&#xff1a; conda install pytorch1.11.0 torchvision0.12.0 torchaudio0.11.0 cudatoolkit11.3 -c pytorchCPU&#xff1…

COSCon'23 开源市集:共赴一场草坪上的开源派对

一年一度的开源盛会&#xff0c;第八届中国开源年会&#xff08;COSCon23 &#xff09;&#xff0c;将于10月28~29日&#xff0c;在四川成都市高新区菁蓉汇召开&#xff01;本次大会的主题是&#xff1a;“开源&#xff1a;川流不息、山海相映”&#xff01; 我们预期会有超过1…

哈希表与有序表

哈希表与有序表 Set结构 key Map结构 key-value 哈希表 哈希表的时间复杂度都是常数项级别的&#xff0c;但常数较大 增删改查的时间都是常数级别的&#xff0c;与数据量无关 当哈希表存储的值是基础数据类型&#xff08;Integer - int&#xff09;&#xff0c;哈希表中内…