深度解析BERT:从理论到Pytorch实战

本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、引言

在信息爆炸的时代,自然语言处理(NLP)成为了一门极其重要的学科。它不仅应用于搜索引擎、推荐系统,还广泛应用于语音识别、情感分析等多个领域。然而,理解和生成自然语言一直是机器学习面临的巨大挑战。接下来,我们将深入探讨自然语言处理的一些传统方法,以及它们在处理语言模型时所面临的各种挑战。

传统NLP技术概览

规则和模式匹配

早期的NLP系统大多基于规则和模式匹配。这些方法具有高度的解释性,但缺乏灵活性。例如,正则表达式和上下文无关文法(CFG)被用于文本匹配和句子结构的解析。

基于统计的方法

随着计算能力的提升,基于统计的方法如隐马尔可夫模型(HMM)和最大熵模型逐渐流行起来。这些模型利用大量的数据进行训练,以识别词性、句法结构等。

词嵌入和分布式表示

Word2Vec、GloVe等词嵌入方法标志着NLP从基于规则到基于学习的向量表示的转变。这些模型通过分布式表示捕捉单词之间的语义关系,但无法很好地处理词序和上下文信息。

循环神经网络(RNN)与长短时记忆网络(LSTM)

RNN和LSTM模型为序列数据提供了更强大的建模能力。特别是LSTM,通过其内部门机制解决了梯度消失和梯度爆炸的问题,使模型能够捕获更长的依赖关系。

Transformer架构

file
Transformer模型改变了序列建模的格局,通过自注意力(Self-Attention)机制有效地处理了长距离依赖,并实现了高度并行化。但即使有了这些进展,仍然存在许多挑战和不足。

在这一背景下,BERT(Bidirectional Encoder Representations from Transformers)模型应运而生,它综合了多种先进技术,并在多个NLP任务上取得了显著的成绩。


二、什么是BERT?

file

BERT的架构

BERT(Bidirectional Encoder Representations from Transformers)模型基于Transformer架构,并通过预训练与微调的方式,对自然语言进行深度表示。在介绍BERT架构的各个维度和细节之前,我们先理解其整体理念。

整体理念

BERT的设计理念主要基于以下几点:

  • 双向性(Bidirectional): 与传统的单向语言模型不同,BERT能同时考虑到词语的前后文。

  • 通用性(Generality): 通过预训练和微调的方式,BERT能适用于多种自然语言处理任务。

  • 深度(Depth): BERT通常具有多层(通常为12层或更多),这使得模型能够捕捉复杂的语义和语法信息。

架构部件

Encoder层

file
BERT完全基于Transformer的Encoder层。每个Encoder层都包含两个主要的部分:

  1. 自注意力机制(Self-Attention): 这一机制允许模型考虑到输入序列中所有单词对当前单词的影响。

  2. 前馈神经网络(Feed-Forward Neural Networks): 在自注意力的基础上,前馈神经网络进一步对特征进行非线性变换。

嵌入层(Embedding Layer)

BERT使用了Token Embeddings, Segment Embeddings和Position Embeddings三种嵌入方式,将输入的单词和附加信息编码为固定维度的向量。

部件的组合

  • 每个Encoder层都依次进行自注意力和前馈神经网络计算,并附加Layer Normalization进行稳定。

  • 所有Encoder层都是堆叠(Stacked)起来的,这样能够逐层捕捉更抽象和更复杂的特征。

  • 嵌入层的输出会作为第一个Encoder层的输入,然后逐层传递。

架构特点

  • 参数共享: 在预训练和微调过程中,所有Encoder层的参数都是共享的。

  • 灵活性: 由于BERT的通用性和深度,你可以根据任务的不同在其基础上添加不同类型的头部(Head),例如分类头或者序列标记头。

  • 高计算需求: BERT模型通常具有大量的参数(几亿甚至更多),因此需要大量的计算资源进行训练。

通过这样的架构设计,BERT模型能够在多种自然语言处理任务上取得出色的表现,同时也保证了模型的灵活性和可扩展性。


三、BERT的核心特点

file
BERT模型不仅在多项NLP任务上取得了显著的性能提升,更重要的是,它引入了一系列在自然语言处理中具有革新性的设计和机制。接下来,我们将详细探讨BERT的几个核心特点。

Attention机制

自注意力(Self-Attention)

自注意力是BERT模型中一个非常重要的概念。不同于传统模型在处理序列数据时,只能考虑局部或前序的上下文信息,自注意力机制允许模型观察输入序列中的所有词元,并为每个词元生成一个上下文感知的表示。

# 自注意力机制的简单PyTorch代码示例
import torch.nn.functional as Fclass SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size), "Embedding size needs to be divisible by heads"self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, queries, mask):N = queries.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]# Split the embedding into self.head different piecesvalues = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = queries.reshape(N, query_len, self.heads, self.head_dim)values = self.values(values)keys = self.keys(keys)queries = self.queries(queries)# Scaled dot-product attentionattention = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:attention = attention.masked_fill(mask == 0, float("-1e20"))attention = torch.nn.functional.softmax(attention, dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)out = self.fc_out(out)return out

多头注意力(Multi-Head Attention)

BERT进一步引入了多头注意力(Multi-Head Attention),将自注意力分成多个“头”,每个“头”学习序列中不同部分的上下文信息,最后将这些信息合并起来。

预训练和微调

BERT模型的成功很大程度上归功于其两阶段的训练策略:预训练(Pre-training)和微调(Fine-tuning)。下面我们会详细地探讨这两个过程的特点、技术点和需要注意的事项。

预训练(Pre-training)

预训练阶段是BERT模型训练过程中非常关键的一步。在这个阶段,模型在大规模的无标签文本数据上进行训练,主要通过以下两种任务来进行:

  1. 掩码语言模型(Masked Language Model, MLM): 在这个任务中,输入句子的某个比例的词会被随机地替换成特殊的[MASK]标记,模型需要预测这些被掩码的词。

  2. 下一个句子预测(Next Sentence Prediction, NSP): 模型需要预测给定的两个句子是否是连续的。

技术点:

  • 动态掩码: 在每个训练周期(epoch)中,模型看到的每一个句子的掩码都是随机的,这样可以增加模型的鲁棒性。

  • 分词器: BERT使用了WordPiece分词器,能有效处理未登录词(OOV)。

注意点:

  • 数据规模需要非常大,以充分训练庞大的模型参数。
  • 训练过程通常需要大量的计算资源,例如高性能的GPU或TPU。

微调(Fine-tuning)

在预训练模型好之后,接下来就是微调阶段。微调通常在具有标签的小规模数据集上进行,以使模型更好地适应特定的任务。

技术点:

  • 学习率调整: 由于模型已经在大量数据上进行了预训练,因此微调阶段的学习率通常会设置得相对较低。

  • 任务特定头: 根据任务的不同,通常会在BERT模型的顶部添加不同的网络层(例如,用于分类任务的全连接层、用于序列标记的CRF层等)。

注意点:

  • 避免过拟合:由于微调数据集通常比较小,因此需要仔细选择合适的正则化策略,如Dropout或权重衰减(weight decay)。

通过这两个阶段的训练,BERT不仅能够捕捉到丰富的语义和语法信息,还能针对特定任务进行优化,从而在各种NLP任务中都表现得非常出色。

BERT与其他Transformer架构的不同之处

预训练策略

虽然Transformer架构通常也会进行某种形式的预训练,但BERT特意设计了两个阶段:预训练和微调。这使得BERT可以首先在大规模无标签数据上进行预训练,然后针对特定任务进行微调,从而实现了更广泛的应用。

双向编码

大多数基于Transformer的模型(例如GPT)通常只使用单向或者条件编码。与之不同,BERT使用双向编码,可以更全面地捕捉到文本中词元的上下文信息。

掩码语言模型(Masked Language Model)

BERT在预训练阶段使用了一种名为“掩码语言模型”(Masked Language Model, MLM)的特殊训练策略。在这个过程中,模型需要预测输入序列中被随机掩码(mask)的词元,这迫使模型更好地理解句子结构和语义信息。


四、BERT的场景应用

BERT模型由于其强大的表征能力和灵活性,在各种自然语言处理(NLP)任务中都有广泛的应用。下面,我们将探讨几个常见的应用场景,并提供相关的代码示例。

文本分类

文本分类是NLP中最基础的任务之一。使用BERT,你可以轻松地将文本分类到预定义的类别中。

from transformers import BertTokenizer, BertForSequenceClassification
import torch# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')# 准备输入数据
inputs = tokenizer("Hello, how are you?", return_tensors="pt")# 前向传播
labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1, label set as 1
outputs = model(**inputs, labels=labels)
loss = outputs.loss
logits = outputs.logits

情感分析

情感分析是文本分类的一个子任务,用于判断一段文本的情感倾向(正面、负面或中性)。

# 继续使用上面的模型和分词器
inputs = tokenizer("I love programming.", return_tensors="pt")# 判断情感
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.softmax(logits, dim=-1)

命名实体识别(Named Entity Recognition, NER)

命名实体识别是识别文本中特定类型实体(如人名、地名、组织名等)的任务。

from transformers import BertForTokenClassification# 加载用于Token分类的BERT模型
model = BertForTokenClassification.from_pretrained('dbmdz/bert-large-cased-finetuned-conll03-english')# 输入数据
inputs = tokenizer("My name is John.", return_tensors="pt")# 前向传播
outputs = model(**inputs)
logits = outputs.logits

文本摘要

BERT也可以用于生成文本摘要,即从一个长文本中提取出最重要的信息。

from transformers import BertForConditionalGeneration# 加载用于条件生成的BERT模型(这是一个假设的例子,实际BERT原生不支持条件生成)
model = BertForConditionalGeneration.from_pretrained('some-conditional-bert-model')# 输入数据
inputs = tokenizer("The quick brown fox jumps over the lazy dog.", return_tensors="pt")# 生成摘要
summary_ids = model.generate(inputs.input_ids, num_beams=4, min_length=5, max_length=20)
print(tokenizer.decode(summary_ids[0], skip_special_tokens=True))

这只是使用BERT进行实战应用的冰山一角。其灵活和强大的特性使它能够广泛应用于各种复杂的NLP任务。通过合理的预处理、模型选择和微调,你几乎可以用BERT解决任何自然语言处理问题。


五、BERT的Python和PyTorch实现

file

预训练模型的加载

加载预训练的BERT模型是使用BERT进行自然语言处理任务的第一步。由于BERT模型通常非常大,手动实现整个架构并加载预训练权重是不现实的。幸运的是,有几个库简化了这一过程,其中包括transformers库,该库提供了丰富的预训练模型和相应的工具。

安装依赖库

首先,你需要安装transformerstorch库。你可以使用下面的pip命令进行安装:

pip install transformers
pip install torch

加载模型和分词器

使用transformers库,加载BERT模型和相应的分词器变得非常简单。下面是一个简单的示例:

from transformers import BertTokenizer, BertModel# 初始化分词器和模型
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")# 查看模型架构
print(model)

这段代码会下载BERT的基础版本(uncased)和相关的分词器。你还可以选择其他版本,如bert-large-uncased

输入准备

加载了模型和分词器后,下一步是准备输入数据。假设我们有一个句子:“Hello, BERT!”。

# 分词
inputs = tokenizer("Hello, BERT!", padding=True, truncation=True, return_tensors="pt")print(inputs)

tokenizer会自动将文本转换为模型所需的所有类型的输入张量,包括input_idsattention_mask等。

模型推理

准备好输入后,下一步是进行模型推理,以获取各种输出:

with torch.no_grad():outputs = model(**inputs)# 输出的是一个元组
# outputs[0] 是所有隐藏状态的最后一层的输出
# outputs[1] 是句子的CLS标签的隐藏状态
last_hidden_states = outputs[0]
pooler_output = outputs[1]print(last_hidden_states.shape)
print(pooler_output.shape)

输出的last_hidden_states张量的形状为 [batch_size, sequence_length, hidden_dim],而pooler_output的形状为 [batch_size, hidden_dim]

以上就是加载预训练BERT模型和进行基本推理的全过程。在理解了这些基础知识后,你可以轻松地将BERT用于各种NLP任务,包括但不限于文本分类、命名实体识别或问答系统。

微调BERT模型

微调(Fine-tuning)是将预训练的BERT模型应用于特定NLP任务的关键步骤。在此过程中,我们在特定任务的数据集上进一步训练模型,以便更准确地进行预测或分类。以下是使用PyTorch和transformers库进行微调的详细步骤。

数据准备

假设我们有一个简单的文本分类任务,其中有两个类别:正面和负面。我们将使用PyTorch的DataLoaderDataset进行数据加载和预处理。

from torch.utils.data import DataLoader, Dataset
import torchclass TextClassificationDataset(Dataset):def __init__(self, texts, labels, tokenizer):self.texts = textsself.labels = labelsself.tokenizer = tokenizerdef __len__(self):return len(self.texts)def __getitem__(self, idx):text = self.texts[idx]label = self.labels[idx]inputs = self.tokenizer(text, padding='max_length', truncation=True, max_length=512, return_tensors="pt")return {'input_ids': inputs['input_ids'].flatten(),'attention_mask': inputs['attention_mask'].flatten(),'labels': torch.tensor(label, dtype=torch.long)}# 假设texts和labels分别是文本和标签的列表
texts = ["I love programming", "I hate bugs"]
labels = [1, 0]
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')dataset = TextClassificationDataset(texts, labels, tokenizer)
dataloader = DataLoader(dataset, batch_size=2)

微调模型

在这里,我们将BERT模型与一个简单的分类层组合。然后,在微调过程中,同时更新BERT模型和分类层的权重。

from transformers import BertForSequenceClassification
from torch.optim import AdamW# 初始化模型
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)# 使用AdamW优化器
optimizer = AdamW(model.parameters(), lr=1e-5)# 训练模型
for epoch in range(3):for batch in dataloader:input_ids = batch['input_ids']attention_mask = batch['attention_mask']labels = batch['labels']outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.lossloss.backward()optimizer.step()optimizer.zero_grad()print(f'Epoch {epoch + 1} completed')

模型评估

完成微调后,我们可以在测试数据集上评估模型的性能。

# 在测试数据集上进行评估...

通过这样的微调过程,BERT模型不仅能够从预训练中获得的通用知识,而且能针对特定任务进行优化。

六、总结

file
经过对BERT(Bidirectional Encoder Representations from Transformers)的深入探讨,我们有机会一窥这一先进架构的内在复杂性和功能丰富性。从其强大的双向注意力机制,到预训练和微调的多样性应用,BERT已经在自然语言处理(NLP)领域中设置了新的标准。

架构的价值

  1. 预训练和微调: BERT的预训练-微调范式几乎是一种“一刀切”的解决方案,可以轻松地适应各种NLP任务,从而减少了从头开始训练模型的复杂性和计算成本。

  2. 通用性与专门化: BERT的另一个优点是它的灵活性。虽然原始的BERT模型是一个通用的语言模型,但通过微调,它可以轻松地适应多种任务和行业特定的需求。

  3. 高度解释性: 虽然深度学习模型通常被认为是“黑盒”,但BERT和其他基于注意力的模型提供了一定程度的解释性。例如,通过分析注意力权重,我们可以了解模型在做决策时到底关注了哪些部分的输入。

发展前景

  1. 可扩展性: 虽然BERT模型本身已经非常大,但它的架构是可扩展的。这为未来更大和更复杂的模型铺平了道路,这些模型有可能捕获更复杂的语言结构和语义。

  2. 多模态学习与联合训练: 随着研究的进展,将BERT与其他类型的数据(如图像和音频)结合的趋势正在增加。这种多模态学习方法将进一步提高模型的泛化能力和应用范围。

  3. 优化与压缩: 虽然BERT的性能出色,但其计算成本也很高。因此,模型优化和压缩将是未来研究的重要方向,以便在资源受限的环境中部署这些高性能模型。

综上所述,BERT不仅是自然语言处理中的一个里程碑,也为未来的研究和应用提供了丰富的土壤。正如我们在本文中所探讨的,通过理解其内部机制和学习如何进行有效的微调,我们可以更好地利用这一强大工具来解决各种各样的问题。毫无疑问,BERT和类似的模型将继续引领NLP和AI的未来发展。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67080.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

13.108.Spark 优化、Spark优化与hive的区别、SparkSQL启动参数调优、四川任务优化实践:执行效率提升50%以上

13.108.Spark 优化 1.1.25.Spark优化与hive的区别 1.1.26.SparkSQL启动参数调优 1.1.27.四川任务优化实践:执行效率提升50%以上 13.108.Spark 优化: 1.1.25.Spark优化与hive的区别 先理解spark与mapreduce的本质区别,算子之间(…

【高性能计算】opencl语法及相关概念(四):结合opencv进行图像高斯模糊处理

目录 高斯模糊简介主函数:host端设备端函数:mywork.cl效果图对比 高斯模糊简介 高斯模糊是一种常用的图像处理技术,用于减少图像中的噪点和细节,并实现图像的平滑效果。它是基于高斯函数的卷积操作,通过对每个像素周围…

使用acme,自动续签免费的SSL,无忧http升级https

使用acme自动续签免费的SSL 安装acme.sh颁发域名将证书安装到nginx下配置nginx的ssl自动续签 这里只进行最简单的操作 安装acme.sh 进入你的用户目录,如果你使用root登陆,那么你的用户目录就是 /root/ curl https://get.acme.sh | sh -s emailmyexam…

Linux环境基础开发工具

xshellssh xshell--充当客户端,提供远程登录服务 yum 背景知识 在Linux下安装软件, 一个通常的办法是下载到程序的源代码, 并进行编译, 得到可执行程序. 但是这样太麻烦了, 于是有些人把一些常用的软件提前编译好, 做成软件包(可以理解成windows上的安装程序)放…

Elasticsearch:利用矢量搜索进行音乐信息检索

作者:Alex Salgado 欢迎来到音乐信息检索的未来,机器学习、矢量数据库和音频数据分析融合在一起,带来令人兴奋的新可能性! 如果你对音乐数据分析领域感兴趣,或者只是热衷于技术如何彻底改变音乐行业,那么本…

隧道结构健康监测系统,保障隧道稳定安全运行

隧道是地下隐蔽工程,会受到潜在、无法预知的地质因素影响,早期修建的隧道经常出现隧道拱顶开裂、地表沉降、隧道渗漏水、围岩变形、附近建筑物倾斜等隧道的健康问题变得日益突出,作为城市生命线不可或缺的一部分,为了确保隧道工程…

GraphQL渗透测试案例及防御办法

什么是GraphQL GraphQL 是一种 API 查询语言,旨在促进客户端和服务器之间的高效通信。它使用户能够准确指定他们在响应中所需的数据,从而有助于避免有时使用 REST API 看到的大型响应对象和多个调用。 GraphQL 服务定义了一个合约,客户端可…

计算机视觉与人工智能在医美人脸皮肤诊断方面的应用

一、人脸皮肤诊断方法 近年来,随着计算机技术和人工智能的不断发展,中医领域开始逐渐探索利用这些先进技术来辅助面诊和诊断。在皮肤望诊方面,也出现了一些现代研究,尝试通过图像分析技术和人工智能算法来客观化地获取皮肤相关的…

【工作笔记-0038】mongodb mongorestore 命令行导入 bson.gz数据

1. 导出的集合文件格式如下(也就是导出的表文件): 例如: D:\Files\xxxx集合名称.bson.gz 怎样导出,这里不做介绍,用 mongodb compass 或者 studio 3t 都可以 2. 下载命令行导入工具: 官方…

ZLMeidaKit在Windows上启动时:计算机中丢失MSVCR110.dll,以及rtmp推流后无法转换为flv视频流解决

场景 ZLMediaKit在Windows上实现Rtmp流媒体服务器以及模拟rtmp推流和http-flv拉流播放: ZLMediaKit在Windows上实现Rtmp流媒体服务器以及模拟rtmp推流和http-flv拉流播放_zlm流媒体服务器_霸道流氓气质的博客-CSDN博客 按照以上教程启动MediaServer.exe时提示&am…

Docker Storage

文章目录 存储持久化存储类型Volumes使用场景管理Volume挂载Volume备份恢复Volume Bind mounts使用场景挂载bind tmpfs挂载tmpfs 存储持久化 在容器中所有创建的文件都是存储在容器可写层 当容器不存在后数据不会持久化,并且如果另一个进程需要数据,很…

在 Amazon 搭建无代码可视化的数据分析和建模平台

现代企业常常会有利用数据分析和机器学习帮助解决业务痛点的需求。如制造业中,利用设备采集上来的数据做预测性维护,质量控制;在零售业中,利用客户端端采集的数据做渠道转化率分析,个性化推荐等。 亚马逊云科技开发者…

HTML5

写在前面 一、简单认识HTML 1.1 什么是网页【2023/08/31】 网站是指因特网上根据一定的规则,使用HTML等制作的用于展示特定内容相关的网页集合。 网页是网站中的一“页”,通常是HTML格式的文件,它要通过浏览器来阅读。 网页是构成网站的…

【微服务】服务发现和管理技术框架选型调研

选型背景 方案对比 结论 结合实际业务和开发需要,着重考虑性能可靠性、功能和社区支持程度三方面,认为Nacos更适合作为服务发现和管理的技术框架。具体理由如下: 性能更好,可靠性更高 经过阿里、APISIX、SpringCloudAlibaba,阿…

华为数通方向HCIP-DataCom H12-821题库(单选题:201-220)

第201题 BGP 协议用​​ beer default-route-advertise​​ 命令来给邻居发布缺省路由,那么以下关于本地 BGP 路由表变化的描述,正确的是哪一项? A、在本地 BGP 路由表中生成一条活跃的缺省路由并下发给路由表 B、在本地 BGP 路由表中生成一条不活跃的缺省路由&…

基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作

文献计量学是指用数学和统计学的方法,定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体,注重量化的综合性知识体系。特别是,信息可视化技术手段和方法的运用,可直观的展示主题的研究发展历程、研究现状、研究…

vr健康管理服务情景化教学弥补现代医学教学中的诸多不足之处

高职高专临床医学院校以培养岗位胜任力为目的,该专业是一门专业性、实践性较强的医学学科,要求培养出来的学生具有较强的临床实践能力,医学生所学的全部知识,都应与实践相结合,解决临床的实际问题,为患者解…

ArrayList、LinkedList、Collections.singletonList、Arrays.asList与ImmutableList.of

文章目录 ListArrayListLinkedListArrayList与LinkedList的区别快速构建list集合Collections.singletonListArrays.asListImmutableList.of Java集合类型有三种:set(集)、list(列表)和map(映射),而List集合是很常用的一种集合类型, List 我…

2023年MySQL-8.0.34保姆级安装教程

重点放前面:演示环境为windows环境。 MySQL社区版本安装教程如下: 一、MySQL安装包下载二、安装配置设置三、配置环境变量 大体分为3个步骤:①安装包的下载;②安装配置设置;③配置环境变量 一、MySQL安装包下载 下载官…

架构设计基础设施保障IaaS存储

目录 1. 云硬盘2. 对象存储3. 表单上传案例4. 服务上传验证5. 云数据库6. 云数据库操作7. 服务连接云数据库8. 新一代原生数据库9 阿里云PolarDB生产最佳实践 1. 云硬盘 HDD(普通云盘) 特征: 性能一般, IOPS大概在数百左右。 应…