如何在docker中访问电脑上的GPU?如何在docker中使用GPU进行模型训练或者加载调用?

如何在docker中访问电脑上的GPU?如何在docker中使用GPU进行模型训练或者加载调用?

在这里插入图片描述

其实使用非常简单,只是一行命令的事,最主要的事配置好驱动和权限。

docker run -it --rm --gpus all ycj520/centos:1.0.0  nvidia-smi

先看看 stackoverflow 上的问题:

How can I have PyTorch code run via a Docker script use my Apple Silicon GPU (via PyTorch MPS)?

I have a Docker script run.sh that runs some PyTorch code in a Docker container.

The PyTorch code uses device = torch.device(‘mps’ if torch.backends.mps.is_available() else ‘cpu’) to run everything on my MacBook Pro’s GPU via the PyTorch MPS (Metal Performance Shader) backend.

If I run the Python script ml.py without Docker, i.e. in my own Python environment, everything runs on the GPU as expected.

But if I run the same code via the Docker script, it only runs on the CPU, which means torch.backends.mps.is_available() must have returned False.

How can I ensure that the Docker container also uses my GPU?

I’ve seen that for NVIDIA GPUs there is a command docker run --gpus all nvidia-test that enables GPU support but I haven’t seen anything like that for Apple Silicon GPUs.

Docker is Linux, there is no Linux support for the MPS device, since it is MacOS specific. –
Dr. Snoopy
Nov 5, 2023 at 20:03
I see. So Apple would have to release something equivalent to nvidia-docker for this to become feasible? –
Mandelmus100
Nov 5, 2023 at 20:08

No, they would have to implement docker natively, people often forget that Docker is technology based on Linux features, when you use Docker on Windows, you use Linux in a virtual machine, similarly for MacOS. –
Dr. Snoopy
Nov 5, 2023 at 20:10

You likely need a specific set of drivers for the docker container to access the MPS device. This may be useful github.com/pytorch/pytorch/issues/81224 –
Karl
Nov 6, 2023 at 23:58

Related questions
264
docker : invalid reference format
13
Can nvidia-docker be run without a GPU?
19
Can I use my GPU from a docker container on a MacBook Pro ? (AMD Radeon GPU)
333
Why doesn’t Python app print anything when run in a detached docker container?
643
How can I use local Docker images with Minikube?
301
How to keep Docker container running after starting services?
0
How to run perticular code in gpu using PyTorch?
454
Using the RUN instruction in a Dockerfile with ‘source’ does not work

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Can nvidia-docker be run without a GPU?

The official PyTorch Docker image is based on nvidia/cuda, which is able to run on Docker CE, without any GPU. It can also run on nvidia-docker, I presume with CUDA support enabled. Is it possible to run nvidia-docker itself on an x86 CPU, without any GPU? Is there a way to build a single Docker image that takes advantage of CUDA support when it is available (e.g. when running inside nvidia-docker) and uses the CPU otherwise? What happens when you use torch.cuda from inside Docker CE? What exactly is the difference between Docker CE and why can’t nvidia-docker be merged into Docker CE?

在这里插入图片描述


TensorFlow 不再支持在 macOS 上使用 GPU 进行计算,因为苹果已经停止了对 Nvidia GPU 的支持。因此,如果您想要使用 TensorFlow 进行 GPU 计算,您需要使用 Windows 或 Linux 操作系统,并使用支持 NVIDIA GPU 的计算机。

但是,如果您使用 macOS,您仍然可以使用 TensorFlow 进行 CPU 计算,也可以在 Docker 容器中使用 TensorFlow 进行 GPU 计算,前提是您的计算机支持 Docker,并且您已经安装了合适的驱动程序和软件。

对于在 Docker 容器中使用 TensorFlow 进行 GPU 计算,您需要执行以下步骤:

安装 Docker 和 NVIDIA CUDA 驱动程序:根据您的操作系统版本,从 Docker 官方网站下载并安装 Docker,然后从 NVIDIA 官方网站下载并安装 CUDA 驱动程序。

安装 nvidia-docker:nvidia-docker 是一个 Docker 插件,用于在容器中访问宿主机上的 NVIDIA GPU。您可以从 GitHub 上的 nvidia-docker 仓库中获取安装说明和脚本。

下载 TensorFlow Docker 镜像:您可以从 Docker Hub 上下载 TensorFlow Docker 镜像。请确保选择正确的镜像,例如 tensorflow/tensorflow:latest-gpu,这将提供支持 GPU 计算的 TensorFlow 版本。

启动 TensorFlow Docker 容器:使用 docker run 命令启动 TensorFlow Docker 容器,并在命令中指定 TensorFlow Docker 镜像、挂载宿主机的数据目录和其他必要的参数。

测试 TensorFlow GPU 计算:在 TensorFlow Docker 容器中运行 GPU 计算程序,以测试 TensorFlow 是否能够正确地访问 NVIDIA GPU。

需要注意的是,使用 Docker 进行 GPU 计算可能需要较长的启动时间和较大的系统资源,因此您需要确保您的计算机满足要求,以避免出现性能问题。

如何让Mac上的Docker访问GPU?
更新Mac系统至最新版本,并安装Docker Desktop。
安装NVIDIA Docker插件,可以通过以下代码进行安装:

brew install nvidia-docker
brew install --cask nvidia-geforce-now

要将GPU访问授予权限,可以通过在终端中运行以下代码来授权:

sudo spctl kext-consent add com.nvidia.kext

禁用Docker中的rootless模式,也可以通过在终端中运行以下代码来禁用:

sudo sysctl net.ipv4.ip_unprivileged_port_start=0

最后,通过以下代码来运行GPU支持的Docker容器:

docker run --gpus all <image-name>

其中,<image-name>为所需的Docker镜像名称。
注意:

如果您遇到权限问题,请记得在命令前加上“sudo”。
确保所用的Docker镜像已经支持GPU访问。

docker中使用GPU训练的方法

对于tensorflow环境配置,即使替换了M1适配的anaconda,使用苹果官方适配m1的tensorflow安装命令,仍旧出现各种问题,可见现在的M1版anaconda还是存在很大问题。所以在屡次不服气的碰壁下我还是改用了miniforge3…真香!

so,建议使用miniforge3管理,miniforge3可以理解成 miniconda/annoconda 的社区版,提供了更稳定的对M1芯片的支持。
使用miniforge3可成功安装支持m1版的tensorflow及pytorch
MPS介绍
(Mac M1芯片为了追求高性能和节能,在底层设计上使用的是一种叫做arm架构的精简指令集,不同于Intel等常用CPU芯片采用的x86架构完整指令集。所以有些基于x86指令集开发的软件不能直接在Mac M1芯片电脑上使用。)

需要注意的是,使用Mac M1芯片加速 pytorch 不需要安装 cuda后端,因为cuda是适配nvidia的GPU的,Mac M1芯片中的GPU适配的加速后端是mps,在Mac对应操作系统中已经具备,无需单独安装。只需要安装适配的pytorch即可。

MPS使用
去年pytorch官方发布了支持在m1版本的Mac上进行模型加速,所以可以安装gpu版pytorch了。
首先要具备arm64的Python,以及1.12版本以上的pytorch
mps用法和cuda很像,只是将“cuda”改为“mps”

import torch
print(torch.backends.mps.is_available())
print(torch.backends.mps.is_built())

结果:

True#表示macOS版本支持
True#表示mps可用

在 Mac M1的GPU 上运行pytorch 代码,要使用 torch.device(“mps”)来指定,或通过to(device) / to(‘mps:0’) 来把模型或变量转入MPS计算

device = torch.device("mps")
model = ModelName(xxx).to(device)
data = torch.Tensor(dataset.x).to(device)

如果报错,只有改成下面这样:

#在parser里面这样定义
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--use_gpu',default=False,action='store_true')use_gpu = args.use_gpu
device = torch.device("mps" if args.use_gpu else "cpu")

原来的代码:

# torch.cuda.set_device(args.device)
# device = torch.device("cuda" if args.cuda else "cpu")

Linux 配置参考:

nvidia-docker是一个可以使用GPU的docker,nvidia-docker是在docker上做了一层封装,通过nvidia-docker-plugin,然后调用到docker上,其最终实现的还是在docker的启动命令上携带一些必要的参数。因此在安装nvidia-docker之前,还是需要安装docker的。

docker一般都是使用基于CPU的应用,而如果是GPU的话,就需要安装特有的硬件环境,比如需要安装nvidia driver。所以docker容器并不直接支持Nvidia GPU。为了解决这个问题,最早的处理办法是在容器内部,全部重新安装nvidia driver,然后通过设置相应的设备参数来启动container,然而这种办法是很脆弱的。因为宿主机的driver的版本必须完全匹配容器内的driver版本,这样导致docker image无法共享,很可能本地机器的不一致导致每台机器都需要去重复操作,这很大的违背了docker的设计之初。

为了使docker image能很便利的使用Nvidia GPU,从而产生了nvidia-docker,由它来制作nvidia driver的image,这就要求在目标机器上启动container时,确保字符设备以及驱动文件已经被挂载。

nvidia-docker-plugin是一个docker plugin,被用来帮助我们轻松部署container到GPU混合的环境下。类似一个守护进程,发现宿主机驱动文件以及GPU 设备,并且将这些挂载到来自docker守护进程的请求中。以此来支持docker GPU的使用。

需提前安装好的软件
docker
由于nvidia docker是基于docker基础之上运行的,因此需要安装原生的docker。

nvidia显卡驱动
毫无疑问,要想使用GPU,必须要安装显卡驱动,这样nvidia docker才能正常运行。

安装nvidia docker
1、下载nvidia-docker.repo文件,并将该文件输出到/etc/yum.repos.d/nvidia-docker.repo

curl -s -L https://nvidia.github.io/nvidia-docker/centos7/x86_64/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo  

2、查找可安装的nvidia docker版本

yum -y search --showduplicates nvidia-docker

可以从中选择自己需要安装的nvidia docker版本,这里我安装的是docker是1.12.6版本的。因此我选择安装倒数第一个版本的nvidia docker。

3、安装nvidia-docker

yum install nvidia-docker-1.0.1-1.x86_64

点击回车,系统就会安装nvidia-docker,需要选yes\no的地方输入y,再点击回车,最终安装成功。

运行nvidia docker
1、运行docker:

// 运行docker
systemctl start docker
// 加入开机启动
systemctl enable docker
// 查看状态
systemctl status coker

2、运行nvidia-docker:

systemctl start nvidia-docker
systemctl enable nvidia-docker
systemctl status nvidia-docker

nvidia-docker的操作命令与docker基本相同,所以操作起来没有什么障碍。

kubernetes调用GPU
yaml文件配置:

apiVersion: v1
kind: Pod
metadata:name: gpu-test
spec:volumes:- name: nvidia-driverhostPath:path: /var/lib/nvidia-docker/volumes/nvidia_driver/384.69- name: cgrouphostPath:path: /sys/fs/cgroupcontainers:- name: tensorflowimage: tensorflow:0.11.0-gpuports:- containerPort: 8000resources:limits:alpha.kubernetes.io/nvidia-gpu: 1volumeMounts:- name: nvidia-drivermountPath: /usr/local/nvidia/readOnly: true- name: cgroupmountPath: /sys/fs/cgroup

alpha.kubernetes.io/nvidia-gpu: 1:表示只使用1块gpu

path: /var/lib/nvidia-docker/volumes/nvidia_driver/384.69:宿主机driver位置,安装了nvidia-docker之后有的,当然需要保证宿主机nvidia driver是已经安装ok的,应该是安装了nvidia-docker之后,会发现宿主机的driver,然后映射到此。

path: /sys/fs/cgroup:挂载该目录也是为了识别显卡,使容器内部能够使用宿主机显卡。

volumeMounts:将宿主机目录挂载到容器内部,这个标签下的配置项就是要把宿主机目录挂载到容器内部的那个目录,通过name标识。

通过这些目录挂载配置,启动pod之后,容器就能够正常识别GPU并进行工作了。

Centos7安装NVIDIA驱动并在docker容器中使用GPU
Install NVIDIA Driver
1.查看是否禁用nouveau

lsmod | grep nouveau# 无输出内容表示禁用,如果有输出则需要配置。
# 新建文件
vim /etc/modprobe.d/blacklist.conf
添加如下两行
blacklist nouveau
options nouveau modeset=0
#保存 重启主机,并确认是否禁用

2.安装elrepo源

yum -y install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm

3.安装nvidia-detect(检查合适的驱动版本)

yum -y install nvidia-detect检查驱动版本 nvidia-detect -v

在这里插入图片描述

4.安装显卡驱动

yum -y install kmod-nvidia
# 注.如果有软件冲突,需要卸载

5.查看安装的版本是否和检测的版本一致
在这里插入图片描述

6.检查驱动是否可用

nvidia-smi

Setting up NVIDIA Container Toolkit

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
yum-config-manager --enable libnvidia-container-experimentalyum clean expire-cachesudo yum install -y nvidia-container-toolkitsudo nvidia-ctk runtime configure --runtime=dockersudo systemctl restart dockersudo docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06    Driver Version: 450.51.06    CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:00:1E.0 Off |                    0 |
| N/A   34C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/670667.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka 使用手册

kafka3.0 文章目录 kafka3.01. 什么是kafka&#xff1f;2. kafka基础架构3. kafka集群搭建4. kafka命令行操作主题命令行【topic】生产者命令行【producer】消费者命令行【consumer】 5. kafka生产者生产者消息发送流程Producer 发送原理普通的异步发送带回调函数的异步发送同步…

golang压缩与解压缩文件

全代码实现&#xff0c;如有帮助&#xff0c;欢迎留下足迹。 目录 压缩 核心处理 解压缩 压缩 入口压缩函数 useBasePathInZip参数&#xff1a; 为 false 相当于全文件视图&#xff0c;zip中没有目录 为 true表示保留源文件的路径&#xff08;srcPaths如果是相对路径&#…

【量子通信】量子通信技术:前景与挑战

量子通信技术&#xff1a;前景与挑战 一、技术背景二、技术原理量子叠加性&#xff1a;量子纠缠性&#xff1a;量子测量&#xff1a;量子不可克隆定理&#xff1a; 三、技术优缺点优点&#xff1a;安全性高&#xff1a;传输速度快&#xff1a;抗干扰性强&#xff1a;传输能力强…

CentOS 中文乱码

CentOS 中文乱码 1、 查看自己系统有没有安装中文语言包&#xff0c;可使用 locale -a 命令列出所有可用的语言环境 如果有中文&#xff0c;则不用安装&#xff0c;如果没有&#xff0c;需要重新安装&#xff0c;使用 yum install kde-l10n-Chinese 2、 修改 i18n 和 locale…

C++奇淫巧计:如何自助控制对象的初始化和销毁

需求 我们需要一个对象时&#xff0c;new 出来后自动根据需求&#xff0c;或是默认构造函数或是拷贝构造函数或是隐式转换&#xff0c;拿到手后就能用&#xff0c;习以为常。 但我们其实可以精确控制 new 的两个行为——内存分配、内存初始化。 代码 #include <iostream…

Mac OS中创建适合网络备份的加密镜像文件:详细步骤与参数选择

这篇文章提供了在Mac OS中创建适合网络备份的加密镜像文件的详细步骤&#xff0c;同时探讨了在选择相关参数时的关键考虑因素&#xff0c;以确保用户能够安全、高效地存储和保护重要数据。 创建步骤 在Mac OS Monterey中&#xff0c;你可以使用“磁盘工具”&#xff08;Disk …

【C++】初始化列表--再谈构造函数

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

PXI-1 Peripheral Module 64Bit 改混合槽 PXI Express Hybrid Slot

PXI PXIEPXI_LBR05VauxPXI_LBR2WAKE#PXI_LBR3ALERT#PXI_LBR412VPXI_LBR512VPXI_LBRL0/PXI_STAR0GNDPXI_LBRL1/PXI_STAR1GNDPXI_LBRL2/PXI_STAR2GNDPXI_LBRL3/PXI_STAR33.3VPXI_LBRL4/PXI_STAR43.3VPXI_LBRL5/PXI_STAR53.3V 实际就是拆掉这个 红黄框里的端子。。

UE4 C++ 动态加载类和资源

动态加载类和资源&#xff1a;指在运行时加载 .cpp void AMyActor::BeginPlay() {Super::BeginPlay();//动态加载资源UStaticMesh* MyTempStaticMesh LoadObject<UStaticMesh>(nullptr,TEXT("/Script/Engine.StaticMesh/Game/StarterContent/Shapes/Shape_NarrowC…

RTthread线程间通信(邮箱,消息队列,信号/软件中断)---03信号(软件中断)源码分析

信号 实际使用看这一个 #if defined(RT_USING_SIGNALS)rt_sigset_t sig_pending; /**< the pending signals 记录来了的信号 */rt_sigset_t sig_mask; /**< the mask bits of signal 记录屏蔽的信号 */rt_sigh…

Android9~Android13 某些容量SD卡被格式化为内部存储时容量显示错误问题的研究与解决方案

声明:原创文章,禁止转载! Android9~Android13 某些容量SD卡被格式化为内部存储时容量显示错误问题的研究与解决方案 分析Android11 系统对于EMMC/UFS作为内部存储、SD卡被格式化为内部存储、SD卡/U盘被格式化为便携式存储的不同处理 一.现象描述 实测Android9 Android10 A…

Aigtek高精度电压源什么作用

高精度电压源是一种能够提供稳定、可靠且精确的电压输出的电子设备。它在科学研究、工程应用和制造业中起着至关重要的作用。以下将详细介绍高精度电压源的作用及其在不同领域的应用。 一、工作原理 稳定性&#xff1a;高精度电压源通常采用精密的电路设计和稳压技术&#xff0…

Java开发IntelliJ IDEA2023

IntelliJ IDEA 2023是一款强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;专为Java开发人员设计。它提供了许多特色功能&#xff0c;帮助开发人员更高效地编写、测试和调试Java应用程序。以下是一些IntelliJ IDEA 2023的特色功能&#xff1a; 智能代码编辑器&…

软件系统架构的演变历史介绍

个人浅见&#xff0c;不喜勿喷&#xff0c;非常感谢。 软件系统架构的演变历史与计算机技术的发展紧密相连。从最早的单一大型计算机&#xff0c;到个人计算机的兴起&#xff0c;再到互联网和云计算的普及&#xff0c;软件系统架构经历了多次重大的变革。以下是软件系统…

探索回溯算法

前言 回溯算法称之通用解算法&#xff0c;任何问题都可以优先使用回溯算法思考&#xff0c;再进行优化改进。那要问上一句回溯算法是怎样思维方式&#xff1f; 一&#xff0c;回溯算法思想 回溯算法是一个类似枚举的搜索尝试过程&#xff0c;主要是在搜索尝试过程中寻找问题…

Jgit Packfile is truncated解决方案

配置方式解决 这两个配置选项是用于提高 SSH 连接稳定性的 SSH 客户端配置参数&#xff0c;它们被添加到 SSH 配置文件&#xff08;通常是 ~/.ssh/config&#xff09;中。这些参数有助于在网络不稳定或者长时间无数据交换时保持 SSH 连接不被断开。下面是每个参数的具体作用&am…

【并行编程框架】AsyncTool

文章目录 AsyncToolAsyncTool是什么&#xff1f;AsyncTool快速入门1&#xff09;导入依赖2&#xff09;自定义Worker3&#xff09;编排包装类Wrapper4&#xff09;提交任务执行5&#xff09;运行结果 并发编程常见的场景串行并行阻塞等待 - 先串行&#xff0c;后并行阻塞等待 -…

电力负荷预测 | 基于TCN的电力负荷预测(Python)———数据预处理

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 基于TCN的电力负荷预测(Python) python3.8 keras2.6.0 matplotlib3.5.2 numpy1.19.4 pandas1.4.3 tensorflow==2.6.0

浏览器提示ERR_SSL_KEY_USAGE_INCOMPATIBLE解决

ERR_SSL_KEY_USAGE_INCOMPATIBLE报错原因 ERR_SSL_KEY_USAGE_INCOMPATIBLE 错误通常发生在使用 SSL/TLS 连接时,指的是客户端和服务器之间进行安全通信尝试失败,原因是证书中的密钥用途(Key Usage)或扩展密钥用途(Extended Key Usage, EKU)与正在尝试的操作不兼容。这意味…

Unity笔记:相机移动

基础知识 鼠标输入 在Unity中&#xff0c;开发者在“Edit” > “Project Settings” > “Input Manager”中设置输入&#xff0c;如下图所示&#xff1a; 在设置了Mouse X后&#xff0c;Input.GetAxis("Mouse X")返回的是鼠标在X轴上的增量值。这意味着它会…