Elasticsearch:使用 Inference API 进行语义搜索

在我之前的文章 “Elastic Search 8.12:让 Lucene 更快,让开发人员更快”,我有提到 Inference API。这些功能的核心部分始终是灵活的第三方模型管理,使客户能够利用当今市场上下载最多的向量数据库及其选择的转换器模型。在今天的文章中,我们将使用一个例子来展示如何使用 Inference API 来进行语义搜索。

前提条件

  • 你需要安装 Elastic Stack 8.12 及以上版本。你可以是自托管的 Elasticsearch 集群或者是在 Elastic Cloud 上的部署
  • 由于 OpenAI 免费试用 API 的使用受到限制,因此需要付费 OpenAI 帐户才能将推理 API 与 OpenAI 服务结合使用。

在今天的展示中,我将使用自己在电脑上搭建的 Elasticsearch 集群来进行展示。安装版本是 Elastic Stack 8.12。

安装

Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考如下的链接来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,我们可以选择 Elastic Stack 8.x 的安装指南来进行安装。在本博文中,我将使用最新的 Elastic Stack 8.10 来进行展示。

在安装 Elasticsearch 的过程中,我们需要记下如下的信息:

拷贝证书到当前工作目录

在客户端连接到 Elasticsearch 时,我们需要 Elasticsearch 的安装证书:

$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
$ ls http_ca.crt 
http_ca.crt

 安装需要的 Python 包

pip3 install elasticsearch load_dotenv
$ pip3 install elasticsearch
Looking in indexes: http://mirrors.aliyun.com/pypi/simple/
Requirement already satisfied: elasticsearch in /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages (8.12.0)
Requirement already satisfied: elastic-transport<9,>=8 in /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages (from elasticsearch) (8.10.0)
Requirement already satisfied: urllib3<3,>=1.26.2 in /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages (from elastic-transport<9,>=8->elasticsearch) (2.1.0)
Requirement already satisfied: certifi in /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages (from elastic-transport<9,>=8->elasticsearch) (2023.11.17)[notice] A new release of pip is available: 23.3.2 -> 24.0
[notice] To update, run: pip3 install --upgrade pip
$ pip3 list | grep elasticsearch
elasticsearch                            8.12.0
rag-elasticsearch                        0.0.1        /Users/liuxg/python/rag-elasticsearch/my-app/packages/rag-elasticsearch

设置环境变量

我们在 termnial 中打入如下的命令来设置环境变量:

export ES_USER=elastic
export ES_PASSWORD=xnLj56lTrH98Lf_6n76y
export OPENAI_API_KEY=YourOpenAIkey

你需要根据自己的 Elasticsearch 配置及 OpenAI key 进行上面的修改。你需要在启动下面的 jupyter 之前运行上面的命令。

创建数据集

我们在当前的目录下创建如下的一个数据集:

movies.json

[{"title": "Pulp Fiction","runtime": "154","plot": "The lives of two mob hitmen, a boxer, a gangster and his wife, and a pair of diner bandits intertwine in four tales of violence and redemption.","keyScene": "John Travolta is forced to inject adrenaline directly into Uma Thurman's heart after she overdoses on heroin.","genre": "Crime, Drama","released": "1994"},{"title": "The Dark Knight","runtime": "152","plot": "When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice.","keyScene": "Batman angrily responds 'I’m Batman' when asked who he is by Falcone.","genre": "Action, Crime, Drama, Thriller","released": "2008"},{"title": "Fight Club","runtime": "139","plot": "An insomniac office worker and a devil-may-care soapmaker form an underground fight club that evolves into something much, much more.","keyScene": "Brad Pitt explains the rules of Fight Club to Edward Norton. The first rule of Fight Club is: You do not talk about Fight Club. The second rule of Fight Club is: You do not talk about Fight Club.","genre": "Drama","released": "1999"},{"title": "Inception","runtime": "148","plot": "A thief who steals corporate secrets through the use of dream-sharing technology is given the inverse task of planting an idea into thed of a C.E.O.","keyScene": "Leonardo DiCaprio explains the concept of inception to Ellen Page by using a child's spinning top.","genre": "Action, Adventure, Sci-Fi, Thriller","released": "2010"},{"title": "The Matrix","runtime": "136","plot": "A computer hacker learns from mysterious rebels about the true nature of his reality and his role in the war against its controllers.","keyScene": "Red pill or blue pill? Morpheus offers Neo a choice between the red pill, which will allow him to learn the truth about the Matrix, or the blue pill, which will return him to his former life.","genre": "Action, Sci-Fi","released": "1999"},{"title": "The Shawshank Redemption","runtime": "142","plot": "Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency.","keyScene": "Andy Dufresne escapes from Shawshank prison by crawling through a sewer pipe.","genre": "Drama","released": "1994"},{"title": "Goodfellas","runtime": "146","plot": "The story of Henry Hill and his life in the mob, covering his relationship with his wife Karen Hill and his mob partners Jimmy Conway and Tommy DeVito in the Italian-American crime syndicate.","keyScene": "Joe Pesci's character Tommy DeVito shoots young Spider in the foot for not getting him a drink.","genre": "Biography, Crime, Drama","released": "1990"},{"title": "Se7en","runtime": "127","plot": "Two detectives, a rookie and a veteran, hunt a serial killer who uses the seven deadly sins as his motives.","keyScene": "Brad Pitt's character David Mills shoots John Doe after he reveals that he murdered Mills' wife.","genre": "Crime, Drama, Mystery, Thriller","released": "1995"},{"title": "The Silence of the Lambs","runtime": "118","plot": "A young F.B.I. cadet must receive the help of an incarcerated and manipulative cannibal killer to help catch another serial killer, a madman who skins his victims.","keyScene": "Hannibal Lecter explains to Clarice Starling that he ate a census taker's liver with some fava beans and a nice Chianti.","genre": "Crime, Drama, Thriller","released": "1991"},{"title": "The Godfather","runtime": "175","plot": "An organized crime dynasty's aging patriarch transfers control of his clandestine empire to his reluctant son.","keyScene": "James Caan's character Sonny Corleone is shot to death at a toll booth by a number of machine gun toting enemies.","genre": "Crime, Drama","released": "1972"},{"title": "The Departed","runtime": "151","plot": "An undercover cop and a mole in the police attempt to identify each other while infiltrating an Irish gang in South Boston.","keyScene": "Leonardo DiCaprio's character Billy Costigan is shot to death by Matt Damon's character Colin Sullivan.","genre": "Crime, Drama, Thriller","released": "2006"},{"title": "The Usual Suspects","runtime": "106","plot": "A sole survivor tells of the twisty events leading up to a horrific gun battle on a boat, which began when five criminals met at a seemingly random police lineup.","keyScene": "Kevin Spacey's character Verbal Kint is revealed to be the mastermind behind the crime, when his limp disappears as he walks away from the police station.","genre": "Crime, Mystery, Thriller","released": "1995"}
]
$ pwd
/Users/liuxg/python/elser
$ ls movies.json 
movies.json

应用设计

我们在当前的目录下打入如下的命令来启动 jupyter:

jupyter notebook

导入所需要的包

from elasticsearch import Elasticsearch, helpers, exceptions
import json
import time,os
from dotenv import load_dotenvload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')url = f"https://{elastic_user}:{elastic_password}@localhost:9200"
client = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)print(client.info())

从上面的输出中,我们可以看出来我们的 client 连接是成功的。更多关于如何连接到 Elasticsearch 的方法,请详细阅读文章 “Elasticsearch:关于在 Python 中使用 Elasticsearch 你需要知道的一切 - 8.x”。

创建 inference 任务

让我们使用 create inference API 创建推理任务。

为此,你i需要一个 OpenAI API 密钥,你可以在 OpenAI 帐户的 API 密钥部分下找到该密钥。 由于 OpenAI 免费试用 API 的使用受到限制,因此需要付费会员才能完成本笔记本中的步骤。

client.inference.put_model(task_type="text_embedding",model_id="my_openai_embedding_model",body={"service": "openai","service_settings": {"api_key": openai_api_key},"task_settings": {"model": "text-embedding-ada-002"}}
)

使用推理处理器创建摄取管道

使用 put_pipeline 方法创建带有推理处理器的摄取管道。 参考上面创建的 OpenAI 模型来推断管道中正在摄取的数据。

client.ingest.put_pipeline(id="openai_embeddings_pipeline", description="Ingest pipeline for OpenAI inference.",processors=[{"inference": {"model_id": "my_openai_embedding_model","input_output": {"input_field": "plot","output_field": "plot_embedding"}}}]
)

让我们记下该 API 调用中的一些重要参数:

  • inference:使用机器学习模型执行推理的处理器。
  • model_id:指定要使用的机器学习模型的ID。 在此示例中,模型 ID 设置为 my_openai_embedding_model。 使用你在创建推理任务时定义的模型 ID。
  • input_output:指定输入和输出字段。
  • input_field:创建密集向量表示的字段名称。
  • output_field:包含推理结果的字段名称。

创建索引

必须创建目标索引的映射(包含模型将根据你的输入文本创建的嵌入的索引)。 目标索引必须具有 dense_vector 字段类型的字段,以索引 OpenAI 模型的输出。

让我们使用我们需要的映射创建一个名为 openai-movie-embeddings 的索引。

client.indices.delete(index="openai-movie-embeddings", ignore_unavailable=True)
client.indices.create(index="openai-movie-embeddings",settings={"index": {"default_pipeline": "openai_embeddings_pipeline"}},mappings={"properties": {"plot_embedding": { "type": "dense_vector", "dims": 1536, "similarity": "dot_product" },"plot": {"type": "text"}}}
)

插入文档

让我们插入 12 部电影的示例数据集。  你需要一个付费的 OpenAI 帐户才能完成此步骤,否则文档提取将由于 API 请求速率限制而超时。

from elasticsearch import helperswith open('movies.json') as f:data_json = json.load(f)# Prepare the documents to be indexed
documents = []
for doc in data_json:documents.append({"_index": "openai-movie-embeddings","_source": doc,})# Use helpers.bulk to index
helpers.bulk(client, documents)print("Done indexing documents into `openai-movie-embeddings` index!")
time.sleep(3)

我们可以到 Kibana 中进行查看:

语义搜索

使用嵌入丰富数据集后,你可以使用语义搜索来查询数据。 将 query_vector_builder 传递给 k 最近邻 (kNN) 向量搜索 API,并提供查询文本和用于创建嵌入的模型。

response = client.search(index='openai-movie-embeddings', size=3,knn={"field": "plot_embedding","query_vector_builder": {"text_embedding": {"model_id": "my_openai_embedding_model","model_text": "Fighting movie"}},"k": 10,"num_candidates": 100}
)for hit in response['hits']['hits']:doc_id = hit['_id']score = hit['_score']title = hit['_source']['title']plot = hit['_source']['plot']print(f"Score: {score}\nTitle: {title}\nPlot: {plot}\n")

最终源码可以在地址下载:https://github.com/liu-xiao-guo/semantic_search_es/blob/main/semantic_search_using_the_inference_API.ipynb

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668599.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm出现 Error: EISDIR: illegal operation on a directory, read

npm出现 Error: EISDIR: illegal operation on a directory, read 一、问题二、解决 一、问题 可能是由于运行了npm config set cafile ""之类的方法,造成了cafile为空 二、解决 文件位于C:\Users\用户名\ 下 找到c盘下的Users下的用户目录&#xff0c;进入找到.n…

框架学习Maven

声明&#xff1a;本文来源于黑马程序员PDF讲义 做为一名Java开发工程师&#xff0c;后端 Web开发技术是我们学习的重点&#xff0c;后端Web开发技术的学习&#xff0c;我们会先学习Java项目的构建工具&#xff1a;Maven 初识Maven Maven是Apache旗下的一个开源项目&#xff…

Verilog实现2进制码与BCD码的互相转换

1、什么是BCD码&#xff1f; BCD码是一种2进制的数字编码形式&#xff0c;用4位2进制数来表示1位10进制中的0~9这10个数。这种编码技术&#xff0c;最常用于会计系统的设计里&#xff0c;因为会计制度经常需要对很长的数字做准确的计算。相对于一般的浮点式记数法&#xff0c;…

14.1 Ajax与JSON应用(❤❤)

14.1 Ajax与JSON应用 1. Ajax1.1 简介1.2 Ajax使用流程1. 前端创建XMLHttpRequest对象2. 发送Ajax请求3. 处理服务器响应4. 代码2. JSON2.1 简介2.2 JS解析JSON3. Ajax与JSON开发3.1 后端:用Jackson实现JSON序列化输出3.2 前端Ajax处理JSON3.3 Ajax工具

总结反思在部署上线短链接项目过程中所踩到的坑

总结反思在部署上线短链接项目过程中所踩到的坑 不容易&#xff0c;自己从零到一手敲的短链接项目&#xff0c;中间遇到了不少的曲折&#xff0c;终于部署上线了。 项目的上线地址&#xff1a;短链接系统 由于没有 2 核 4 g 服务器&#xff0c;就使用了两台 2 核 2 g 丐版服务…

2019年江苏省职教高考计算机技能考试——一道程序改错题的分析

题目&#xff1a;函数将str字符串中的5个数字字符串转换为整数&#xff0c;并保存在二维数组m的最后一行&#xff0c;各元素为3、-4、16、18、6。并经函数move处理后&#xff0c;运行结果如下&#xff1a; 18 6 3 -4 16 16 18 6 3 -4 -4 16 …

香港倾斜模型3DTiles数据漫游

谷歌地球全香港地区倾斜摄影数据&#xff0c;通过工具转换成3DTiles格式&#xff0c;将这份数据完美加载到三维数字地球Cesium上进行完美呈现&#xff0c;打造香港地区三维倾斜数据覆盖&#xff0c;完美呈现香港城市壮美以及维多利亚港繁荣景象。再由12.5米高分辨率地形数据&am…

【开源】JAVA+Vue+SpringBoot实现二手车交易系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 二手车档案管理模块2.3 车辆预约管理模块2.4 车辆预定管理模块2.5 车辆留言板管理模块2.6 车辆资讯管理模块 三、系统设计3.1 E-R图设计3.2 可行性分析3.2.1 技术可行性分析3.2.2 操作可行性3.2.3 经济…

02.05

1.单链表 main #include "1list_head.h" int main(int argc, const char *argv[]) { //创建链表之前链表为空Linklist headNULL;int n;datatype element;printf("please enter n:");scanf("%d",&n);for(int i0;i<n;i){printf("ple…

IDEA新建文件夹后右击不能创建class类排错方法

目录 1 查看自身文件名是否为关键词 2 查看是否被“蓝色文件夹”给包含了 3 检查设置那边的class模板 4 报错解决 1 查看自身文件名是否为关键词 如下使用了 Java中的关键词"class"所以才无法创建包 ---------------------------------------------------------…

二维差分数组的概念

前面介绍了一维差分数组的用法及案例&#xff0c; 差分数组概念及基础用例1 差分数组用例2 下面介绍一下二维差分数组的概念。 构造二维差分数组&#xff1a; 创建与原始矩阵相同大小的差分数组第一行和第一列就是类似一维差分数组的写法&#xff0c;后 - 前剩下的就是减去差…

easyexcle 导出csv

导入jar <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.3.3</version></dependency>代码 private static List<List<String>> head() {List<List<String>&g…

Linux cp命令(cp指令)解析

文章目录 Linux cp命令解析基本语法常用参数-i (交互式复制)-r 或 -R (递归复制)-v (详细输出)-p (保留文件属性) 高级应用复制多个文件到一个目录使用通配符复制多个文件 进阶讲解 Linux cp命令解析 Linux操作系统中&#xff0c;cp是一个非常实用且常见的命令&#xff0c;它的…

量化交易学习4(投资组合基本认识)

1 如何衡量投资组合的收益率 1.1 投资组合收益率的计算方法 1.2 投资组合的绝对收益率和相对收益率 2 如何衡量投资组合的风险 2.1 风险的定义 风险是指在未来可能发生的不确定性事件所带来的潜在损失。 在投资领域中&#xff0c;风险通常指投资所面临的不确定性和潜在的损失…

自学Python第二十二天- Django框架(六) django的实用插件:cron、APScheduler

django-crontab 和 django-cron 有时候需要django在后台不断的执行一个任务&#xff0c;简单的可以通过中间件来实现&#xff0c;但是中间件是根据请求触发的。如果需要定时执行任务&#xff0c;则需要使用到一些插件。 django-crontab 和 django-cron 是常用的用于处理定时任…

hive表加字段

目录 1.给表添加字段2.为什么使用cascade3.使用场景 1.给表添加字段 alter table database.tablename add columns(字段名 字段类型 comment 字段中文含义) cascade;2.为什么使用cascade 在Hive中&#xff0c;当你想要修改表结构&#xff0c;例如添加字段时&#xff0c;可能会…

群晖NAS开启FTP服务结合内网穿透实现公网远程访问本地服务

⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 文章目录 ⛳️ 推荐1. 群晖安装Cpolar2. 创建FTP公网地址3. 开启群晖FTP服务4. 群晖FTP远程连接5. 固定FTP公网地址6. 固定FTP…

【优先级队列(大顶堆 小顶堆)】【遍历哈希表键值对】Leetcode 347 前K个高频元素

【优先级队列&#xff08;大顶堆 小顶堆&#xff09;】【排序】Leetcode 347 前K个高频元素 1.不同排序法归纳2.大顶堆和小顶堆3.PriorityQueue操作4.PriorityQueue的升序&#xff08;默认&#xff09;与降序5.问题解决&#xff1a;找前K个最大的元素 &#xff1a;踢走最小的&…

HashCat 恢复Excel、Word、PPT密码保姆教程

HashCat 恢复Excel、Word、PPT密码 一、流程 整体需要两个步骤 先用office2john.py获取下文件的hash值 python office2john.py 1.xlsx > hash这个命令需要你电脑有python环境&#xff0c;然后在cmd命令窗口中执行此命令就行 文件链接&#xff1a;https://github.com/magnu…

Python 轻量级定时任务调度:APScheduler

简述 APscheduler (Advanced Python Scheduler)&#xff0c;作用为按指定的时间规则执行指定的作业。提供了基于日期date、固定时间间隔interval 、以及类似于Linux上的定时任务crontab类型的定时任务。该框架不仅可以添加、删除定时任务&#xff0c;还可以将任务存储到数据库…