算法42:天际线问题(力扣218题)---线段树

218. 天际线问题

城市的 天际线 是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度,请返回 由这些建筑物形成的 天际线 。

每个建筑物的几何信息由数组 buildings 表示,其中三元组 buildings[i] = [lefti, righti, heighti] 表示:

  • lefti 是第 i 座建筑物左边缘的 x 坐标。
  • righti 是第 i 座建筑物右边缘的 x 坐标。
  • heighti 是第 i 座建筑物的高度。

你可以假设所有的建筑都是完美的长方形,在高度为 0 的绝对平坦的表面上。

天际线 应该表示为由 “关键点” 组成的列表,格式 [[x1,y1],[x2,y2],...] ,并按 x 坐标 进行 排序 。关键点是水平线段的左端点。列表中最后一个点是最右侧建筑物的终点,y 坐标始终为 0 ,仅用于标记天际线的终点。此外,任何两个相邻建筑物之间的地面都应被视为天际线轮廓的一部分。

注意:输出天际线中不得有连续的相同高度的水平线。例如 [...[2 3], [4 5], [7 5], [11 5], [12 7]...] 是不正确的答案;三条高度为 5 的线应该在最终输出中合并为一个:[...[2 3], [4 5], [12 7], ...]

示例 1:

输入:buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
输出:[[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
解释:
图 A 显示输入的所有建筑物的位置和高度,
图 B 显示由这些建筑物形成的天际线。图 B 中的红点表示输出列表中的关键点。

示例 2:

输入:buildings = [[0,2,3],[2,5,3]]
输出:[[0,3],[5,0]]

分析:

这一题看起来很复杂,其实掌握了算法40和算法41的知识点以后,分析起来还是很容易的。

1. 首先,我们观察图片发现,天际线搜集的就是每个建筑物的开始坐标和结束坐标。开始坐标就是建筑物的高度。而结束坐标默认搜集高度为0.

2. 如果有第二个建筑物和第一个建筑物有部分重叠,那么第二个建筑物比第一个建筑物高的话,就搜集第二个建筑物开始位置的横坐标和高度;

如果第二个建筑物比第一个建筑物更宽,说明第二个建筑物把第一个建筑物个住当住了,第二个建筑物比第一个建筑物又高又宽,那么直接放弃第一个建筑物搜集的结束点的横坐标和高度信息;搜集第二个建筑物的坐标和高度替换第一个建筑物的结束点信息。当然,第二个建筑物的结束点高度为0.

3. 建筑物给的顺序,是X轴排好序的。因此,每添加一个建筑物,就搜集一下开始点。结束点是需要判断的;

4. 利用线段树的知识点,首先对X轴坐标进行搜集并确认区间;其次,每一个建筑物都有区间,区间的结束点都默认为0;0代表不更新,如果当前区间被之前的建筑物占领了位置,还保留之前的建筑物坐标信息。

5. 以本题第一个案例来分析,首先搜集X轴坐标并划分区间信息:

有了以上信息,我们接下来就是逐步推导的过程了:

由于天际点搜集的是每个区间的开始位置和结束位置;因此,存在连续、重复的信息应该忽略掉后一个重复值。最终搜集的是:

参照上图,根据区间获取X轴坐标值:

1 区间的 10       1区间对应X轴的2, 因此最终是 [2, 10]

2 区间的 15        2区间对应X轴的3, 因此最终是 [3, 15]

4 区间的 12        4区间对应X轴的7, 因此最终是 [7, 12]

6 区间的 0          6区间对应X轴的12, 因此最终是 [12, 0]

7 区间的 10        7区间对应X轴的15, 因此最终是 [15, 10]

9 区间的 8          9区间对应X轴的20, 因此最终是 [20, 8]

10 区间的 0        10区间对应X轴的24, 因此最终是 [24, 0]

最终结果就是 [[2, 10], [3, 15], [7, 12], [12, 0], [15, 10], [20, 8], [24, 0]]

代码实现:

package code04.线段树_02;import java.util.*;//力扣 216,天际线问题 https://leetcode.cn/problems/the-skyline-problem/
public class Code03_SkyLine_2 {class SegmentTree {int[] lines;SegmentTree(int size){lines = new int[size * 4];}//不使用懒更新public void add(int left,int right,int curIndex,int start,int end,int value){//叶子节点if (left == right) {if (left != end) {lines[curIndex] = value > lines[curIndex] ? value : lines[curIndex];}return;}int mid = (left + right)/2;if (start <= mid) {add(left, mid, curIndex * 2, start, end, value);}if (end > mid) {add(mid + 1, right, curIndex * 2 + 1, start, end, value);}}public void query(int left,int right,int curIndex,Map map,List<List<Integer>> list){//叶子节点if (left == right) {/*** 1. 为空直接放入* 2. 不为空,需要判断list最后一个元素*    即最后一个元素的下标为1的位置的值,是否与innerList*    下标为1的值相等。相等则排除,否则加入*/if (list.isEmpty()|| (!list.isEmpty()&& list.get(list.size() - 1) != null&& list.get(list.size() - 1).get(1) != lines[curIndex])) {List<Integer> innerList = new ArrayList<>();//横坐标innerList.add((Integer) map.get(left));//纵坐标innerList.add( lines[curIndex]);list.add(innerList);}return;}int mid = (left + right)/2;query(left, mid, curIndex * 2, map, list);query(mid + 1, right, curIndex * 2 + 1, map, list);}}//根据x轴,按照从左到右、从大到小的顺序编制区间下标public HashMap<Integer, Integer> index(int[][] positions){TreeSet<Integer> pos = new TreeSet<>();//离散化过程,统计开始、结束区间的坐标。//不管数组长度为多少,最终都是落在这些区间中的for (int[] arr : positions) {pos.add(arr[0]);pos.add(arr[1]);}int index = 1;HashMap<Integer, Integer> map = new HashMap<>();//给每个下标编个index,从1开始; 模拟原始线段树的原始数组中给每个元素添加下标的逻辑for (Integer key : pos) {map.put(key, index++);}return map;}//根据区间下标找对应的x轴坐标值public HashMap<Integer, Integer> reverseKeyValue (HashMap<Integer, Integer> map){HashMap reverseMap = new HashMap();for (Iterator iterator = map.keySet().iterator(); iterator.hasNext();) {int key = (int) iterator.next();int value = map.get(key);reverseMap.put(value, key);}return reverseMap;}public List<List<Integer>> getSkyline(int[][] buildings) {//获取到了X轴上对应的下标HashMap<Integer, Integer> map = index(buildings);int size = map.size();SegmentTree tree = new SegmentTree(size);//原始数组的范围int left = 1;int curIndex = 1;int right = size;for (int[] arr : buildings) {//任务的范围int start = map.get(arr[0]);int end = map.get(arr[1]);int value = arr[2];tree.add(left, right, curIndex, start, end, value);}List<List<Integer>> list = new ArrayList<>();HashMap<Integer, Integer> reverseMap = reverseKeyValue(map);tree.query(left, right, curIndex, reverseMap, list);return list;}public static void main(String[] args) {int[][] buildings = {{2,9,10},{3,7,15},{5,12,12},{15,20,10},{19,24,8}};Code03_SkyLine_2 ss = new Code03_SkyLine_2();System.out.println(ss.getSkyline(buildings));}
}

力扣测试结果:

一顿操作猛如虎,结果只打败了 5%,说明代码不够优秀,还需要优化。

优化:

目测我刚刚分析的图片

1、区间的最后一个高度根本就不做考虑,也就是说线段树更新 1 - N,实际上关注的就是 1 到 (N-1)的范围; 这样的话,add方法内部的 

if (left == right) {if (left != end) {lines[curIndex] = value > lines[curIndex] ? value : lines[curIndex];}return;
}

就可以直接去掉  if (left != end)  逻辑判断了。

2. 我们每添加一个建筑物,就递归到子节点。虽然线段树的时间复杂度为O(logN). 但是,执行1次和执行10次这样的时间复杂度方法,时间还是不一样的。因此,需要对目前的add方法进行优化,线段树的懒更新必须加进去

优化代码:

package code04.线段树_02;import java.util.*;//力扣 216,天际线问题 https://leetcode.cn/problems/the-skyline-problem/
public class Code03_SkyLine_2_opt {class SegmentTree {int[] lazy;SegmentTree(int size){lazy = new int[size * 4];}//不使用懒更新public void add(int left,int right,int curIndex,int start,int end,int value){if (start <= left && right <= end) {lazy[curIndex] = value > lazy[curIndex] ? value : lazy[curIndex];return;}int mid = (left + right)/2;pushDown(curIndex);if (start <= mid) {add(left, mid, curIndex * 2, start, end, value);}if (end > mid) {add(mid + 1, right, curIndex * 2 + 1, start, end, value);}}public void pushDown (int curIndex){if (lazy[curIndex] != 0) {lazy[curIndex*2] = lazy[curIndex] > lazy[curIndex * 2] ? lazy[curIndex] : lazy[curIndex * 2] ;lazy[curIndex*2+1] = lazy[curIndex] > lazy[curIndex * 2 + 1] ? lazy[curIndex] : lazy[curIndex * 2 + 1] ;lazy[curIndex] = 0;}}public void query(int left,int right,int curIndex,Map map,List<List<Integer>> list){//叶子节点if (left == right) {if (list.isEmpty()|| (!list.isEmpty()&& list.get(list.size() - 1) != null&& list.get(list.size() - 1).get(1) != lazy[curIndex])) {List<Integer> innerList = new ArrayList<>();//横坐标innerList.add((Integer) map.get(left));//纵坐标innerList.add(lazy[curIndex]);list.add(innerList);}return;}int mid = (left + right)/2;pushDown(curIndex);query(left, mid, curIndex * 2, map, list);query(mid + 1, right, curIndex * 2 + 1, map, list);}}//根据x轴,按照从左到右、从大到小的顺序编制区间下标public HashMap<Integer, Integer> index(int[][] positions){TreeSet<Integer> pos = new TreeSet<>();//离散化过程,统计开始、结束区间的坐标。//不管数组长度为多少,最终都是落在这些区间中的for (int[] arr : positions) {pos.add(arr[0]);pos.add(arr[1]);}int index = 1;HashMap<Integer, Integer> map = new HashMap<>();//给每个下标编个index,从1开始; 模拟原始线段树的原始数组中给每个元素添加下标的逻辑for (Integer key : pos) {map.put(key, index++);}return map;}//根据区间下标找对应的x轴坐标值public HashMap<Integer, Integer> reverseKeyValue (HashMap<Integer, Integer> map){HashMap reverseMap = new HashMap();for (Iterator iterator = map.keySet().iterator(); iterator.hasNext();) {int key = (int) iterator.next();int value = map.get(key);reverseMap.put(value, key);}return reverseMap;}public List<List<Integer>> getSkyline(int[][] buildings) {//获取到了X轴上对应的下标HashMap<Integer, Integer> map = index(buildings);int size = map.size();SegmentTree tree = new SegmentTree(size);//原始数组的范围int left = 1;int curIndex = 1;int right = size;for (int[] arr : buildings) {//任务的范围int start = map.get(arr[0]);int end = map.get(arr[1]);int value = arr[2];//天际线的区间最后一个x坐标的高度信息根本不做考虑,默认就是0.// 因此,start - end的区间,实际考虑的知识 start - (end-1)的范围tree.add(left, right, curIndex, start, end - 1, value);}List<List<Integer>> list = new ArrayList<>();HashMap<Integer, Integer> reverseMap = reverseKeyValue(map);tree.query(left, right, curIndex, reverseMap, list);return list;}public static void main(String[] args) {//int[][] buildings = {{2,9,10},{3,7,15},{5,12,12},{15,20,10},{19,24,8}};//int[][] buildings = {{0,2,3},{2,5,3}};int[][] buildings = {{2,13,10},{10,17,25},{12,20,14}};Code03_SkyLine_2_opt ss = new Code03_SkyLine_2_opt();System.out.println(ss.getSkyline(buildings));}
}

测试结果:打败76%

分析这个问题并且实现第一版代码只花了半天时间,但是优化出第二版代码却花了一整天。

不管是什么算法和数据结构,光掌握原理是远远不够的。熟能生巧,多练、多思考,才能快速写出优秀的代码,这是不可缺少的流程。共勉之!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/665666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学网攻】 第(20)节 -- 网络端口地址转换NAPT配置

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…

C语言应用实例——贪吃蛇

&#xff08;图片由AI生成&#xff09; 0.贪吃蛇游戏背景 贪吃蛇游戏&#xff0c;最早可以追溯到1976年的“Blockade”游戏&#xff0c;是电子游戏历史上的一个经典。在这款游戏中&#xff0c;玩家操作一个不断增长的蛇&#xff0c;目标是吃掉出现在屏幕上的食物&#xff0c…

CTF(5)

一、[SWPUCTF 2021 新生赛]ez_caesar 1、题目 import base64 def caesar(plaintext):str_list list(plaintext)i 0while i < len(plaintext):if not str_list[i].isalpha():str_list[i] str_list[i]else:a "A" if str_list[i].isupper() else "a"…

C++学习Day01之初识C++ Helloworld

目录 一、程序二、输出三、分析与总结 一、程序 #include <iostream> //标准输入输出流 i - input 输入 o - output 输出 stream 流 相当于 stdio.h using namespace std; //使用 标准 命名空间 //程序入口函数 int main() {// cout 标准输出流对象// <&l…

Java学习-案例-ATM系统

案例ATM系统 大致思路&#xff1a; 实现功能&#xff1a; 案例代码&#xff1a; Account类&#xff1a; packageatmDemo; publicclassAccount{ privateStringcardId; privateStringuserName; privatecharsex; privateStringpassWord; privatedoublemoney; privatedoublelimit; …

ICLR 2024 | MolGen: 化学反馈引导的预训练分子生成

MolGen: 化学反馈引导的预训练分子生成 英文题目&#xff1a;Domain-Agnostic Molecular Generation with Chemical Feedback 发表会议&#xff1a;ICLR 2024 论文链接&#xff1a;https://arxiv.org/abs/2301.11259 代码链接&#xff1a;https://github.com/zjunlp/MolGen 目录…

可解释性AI(XAI):构建透明和值得信赖的决策过程

可解释性AI&#xff08;XAI&#xff09;旨在提高人工智能系统的透明度和可理解性&#xff0c;使人们更好地理解AI的决策过程和原理。随着AI技术的广泛应用&#xff0c;XAI成为了一个备受关注的重要领域。它不仅有助于建立人们对AI的信任&#xff0c;还可以帮助解决AI伦理和偏见…

Python flask 表单详解

文章目录 1 概述1.1 request 对象 2 示例2.1 目录结构2.2 student.html2.3 result.html2.4 app.py 1 概述 1.1 request 对象 作用&#xff1a;来自客户端网页的数据作为全局请求对象发送到服务器request 对象的重要属性如下&#xff1a; 属性解释form字典对象&#xff0c;包…

Android状态栏/通知栏图标白底问题

问题及现象 从android L版本开始&#xff0c;为了统一图标样式&#xff0c;会将通知栏、状态栏等显示图标处统一为白底或黑底&#xff0c;以促使开发人员规范图标设计。 从现象看&#xff0c;状态栏会显示一个白底的方框&#xff1b;下拉通知栏展开时的图标为白底方框加圆框…

IEC104 S帧超时判定客户与服务端不匹配造成的异常链接问题分析

2、通过ss命令发现确有链接端口变化&#xff0c;与设备约一天一次的重连&#xff0c;通过抓包&#xff08;tcpdump -vvv -nn port 1001 -w 0926.cap&#xff09;分析得以下现象 2.1、异常情况时未对设备的I帧均匀的回S帧进行确认&#xff0c;正常情况时均匀的回S帧进行确认 2.…

酷开科技依托酷开系统新剧热播,引领潮流风向

随着科技的不断发展&#xff0c;智能电视已经成为了家庭娱乐的主流&#xff0c;是消费者居家休闲放松的好帮手。其中&#xff0c;作为国内智能电视操作系统领军者的酷开系统&#xff0c;一直致力于为消费者提供丰富的内容和贴心的体验。近日&#xff0c;酷开系统新剧热播&#…

仰暮计划|“每次他们吃饭,出来散步,都是背着枪,枪都是装满子弹上好膛,时刻准备着作战和反击”

20世纪70年代中叶&#xff0c;越南结束抗美战争、实现国家统一后&#xff0c;把中国视为“头号敌人”&#xff0c;中越关系急剧恶化&#xff0c;中国边疆的和平、安定和人民的生命财产受到严重威胁。在此情况下&#xff0c;1979年2月17日&#xff0c;遵照中央军委命令&#xff…

车载测试Vector工具CANoe——常见问题汇总(中)

车载测试Vector工具CANoe——常见问题汇总(中) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一…

【兼容认证】白鲸开源与银河麒麟高级服务器操作系统成功通过测试

2024年1月2日&#xff0c;北京白鲸开源科技有限公司&#xff08;以下简称"白鲸开源"&#xff09;荣幸宣布&#xff0c;白鲸开源旗下产品 WhaleStudio V2.4 已成功通过与麒麟软件有限公司旗下的银河麒麟高级服务器操作系统产品的兼容性测试。 麒麟软件有限公司的银河麒…

elk之简介

写在前面 本文看下es的简介。 1&#xff1a;简介 背后公司&#xff0c;elastic&#xff0c;08年纽交所上市&#xff0c;与腾讯&#xff0c;阿里等云厂商有合作&#xff0c;推出云产品&#xff0c;类似功能的产品由solr&#xff0c;splunk&#xff0c;但使用量es当前遥遥领先…

【初中生讲机器学习】4. 支持向量机算法怎么用?一个实例带你看懂!

创建时间&#xff1a;2024-02-02 最后编辑时间&#xff1a;2024-02-03 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名初三学生&#xff0c;热爱计算机和数学&#xff0c;我们一起加…

火贱兔奔月

欢迎来到程序小院 火贱兔奔月 玩法&#xff1a;点击左右箭头&#xff0c;控制火贱兔躲开障碍物&#xff0c;奔向月球和嫦娥姐姐约会&#xff0c;贱兔就是矫情&#xff0c;快去本月吧^^。开始游戏https://www.ormcc.com/play/gameStart/267 html <canvas id"gameCanva…

深度学习技巧应用35-L1正则化和L2正则在神经网络模型训练中的应用

大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用35-L1 正则化和L2正则在神经网络模型训练中的应用。L1正则化和L2正则化是机器学习中常用的两种正则化方法,用于防止模型过拟合并提高模型的泛化能力。这两种正则化方法通过在损失函数中添加惩罚项来控制模型的复杂性。…

ChatGPT 4.0 升级指南, ChatGPT Plus(GPT 4.0) 有何优势?

1.ChatGPT 是什么&#xff1f; ChatGPT 是由 OpenAI 开发的一种基于人工智能的聊天机器人&#xff0c;它基于强大的语言处理模型 GPT&#xff08;Generative Pre-trained Transformer&#xff09;构建。它能够理解人类语言&#xff0c;可以为我们解决实际的问题。 ChatGPT 4.…

获取github某项目软件的最新版本方法(通过命令行)

场景&#xff1a; 如果我们项目中需要实现某个Github公共软件的最新版本更新 那么获取软件的最新的发布版本就是一个比较重要的工作了 对此&#xff0c;Github提供对外api不需要自己手动填写脚本了 解决方案&#xff1a; 替换黄色字体的项目地址&#xff0c;然后在cmd中执行…