Super Resolve Dynamic Scene from Continuous Spike Streams论文笔记

摘要

近期,脉冲相机在记录高动态场景中展示了其优越的潜力。不像传统相机将一个曝光时间内的视觉信息进行压缩成像,脉冲相机连续地输出二的脉冲流来记录动态场景,因此拥有极高的时间分辨率。而现有的脉冲相机重建方法主要集中在重建和脉冲相机相同分辨率的图像上。然而,作为高时间分辨率的权衡,脉冲相机的空间分辨率是有限的。为了处理这一问题,我们设计了一种脉冲相机超分辨率框架,旨在从低分辨率的二值脉冲流中得到超分辨率的光强图像。由于相机和捕捉物体之间的相对运动,传感器同一像素上激发的脉冲无法形容外在场景中的相同点。本文利用相对运动,推导出光强与每个脉冲之间的关系,以恢复高时间分辨率和高空间分辨率的外部场景。实验结果表明,该方法可以从低分辨率的脉冲流中重建出良好的高分辨率图像。

介绍

随着实时计算机视觉应用的发展,传统数码相机的缺点逐渐暴露。传统相机通常在一个曝光窗口内积累光电信息来形成快照帧。这样的的成像原理可以为静态场景产出富含细节的清晰图片。然而,对于拥有高速移动的动态场景,移动物体上的某一点会被投影到传感器的不同像素点上,导致运动模糊。

为了解决这一问题,脉冲相机被提出。脉冲相机可以持续地监控到达的光子并且激发连续的脉冲流,从而记录高分辨率的动态场景。相比于事件相机,脉冲相机可以记录绝对的光照强度而不是相对光强变化。

在本文中,我们针对脉冲相机设计了一种全新的图像重建框架。通过利用相对运动,我们可以恢复场景的分辨率远远高于由脉冲流直接提供的分辨率。我们仔细分析了脉冲相机的成像原理,基于脉冲相机成像原理,构建了图像光强和每个脉冲之间的关系,从而可以从脉冲流中得到超像素的光强信息。文章的主要贡献如下:
1、我们为脉冲相机提出了一种超分辨率框架。
2、我们不是简单地将图像超分辨率算法应用于脉冲相机的LR(低分辨率,low resolution)重建,而是推导出光强与每个脉冲之间的关系,从而从买从流中估计像素级的超分辨率光强。
3、实验结果显示所提出的方法可以从二值LR脉冲流中重建出不错的HR光强图像,这是现有方法做不到的。

背景知识

脉冲相机的工作机制

脉冲相机包含了一系列的像素点,每一个像素点独立地记录光照强度。每一个像素包含三个主要的部分:感光器、积分器和比较器。感光器从外部场景捕获入射光,并将光强转换为积分器可以识别的电压。积分器对转化而来的电荷做累加,比较器持续地检测积累的信号。一旦达到阈值 θ \theta θ,脉冲则会被激发,积分器重置,开始新一轮的“积累与发射”循环。

由于每一个像素独立工作,我们可以将我们的讨论限定在一个像素 p = ( r , c ) p=(r,c) p=(r,c)上。 p p p t t t时刻的电荷量可以表示为:
A ( t ) = ∫ Ω p ∫ 0 t α ⋅ I ( z , x ) d x d z m o d θ (1) A(t)=\int_{\Omega_p}\int_0^t\alpha\cdot I(z,x)dxdz\mod\theta\tag{1} A(t)=Ωp0tαI(z,x)dxdzmodθ(1)
这里, Ω p \Omega_p Ωp表示像素 p p p包含的空间区域, I ( z , t ) I(z,t) I(z,t)表示 t t t时刻 z = ( x , y ) z=(x,y) z=(x,y)位置上的光照强度, α \alpha α表示光电转化效率。脉冲可以在任意的时间 t t t被激发,但是相机只能以离散时间二值信号 S ( n ) S(n) S(n)的形式读出脉冲(如图二所示)。具体来说,相机以一个固定的短时间间隙 T T T来检查flag,如果 t t t时刻(其中 ( ( n − 1 ) T < t ≤ n T ) ((n-1)T<t≤nT) ((n1)T<tnT))有flag,则 S ( n ) = 1 S(n)=1 S(n)=1。否则, S ( n ) = 0 S(n)=0 S(n)=0。当光子连续到达时,传感器上的像素会同时独立地进行工作,激发出脉冲来表示特定数量光子的到达。随着时间的推进,相机会产生一些列的二值脉冲 S ∈ { 0 , 1 } H × W × N S\in \{0,1\}^{H\times W\times N } S{0,1}H×W×N(如图一(a)所示)。
在这里插入图片描述

在这里插入图片描述

问题描述

脉冲相机的目的是记录高速运动场景的动态光强变化过程。一旦脉冲阵列被捕捉到,我们旨在恢复出任何时刻的瞬时光强。特别是当考虑到脉冲相机有限的空间分辨率,我们的目标是超分辨高质量的光强图像与细节。我们没有采用简单结合脉冲重建算法和现有图像超分辨率算法的方法,而是直接估计每一个像素对应的超分辨率强度。这是一个病态的逆问题,可以表示为如下的形式。给定脉冲阵列 S ∈ { 0 , 1 } H × W × N S\in\{0,1\}^{H\times W\times N } S{0,1}H×W×N,我们的目标是从低分辨率的脉冲阵列中恢复高质量的高分辨率强度图像 I H D ∈ [ 0 , 255 ] c H × c W × c N I^{HD}\in[0,255]^{cH\times cW\times cN } IHD[0,255]cH×cW×cN,其中 c c c是放大因子。

方法

如图三所示,由于相机和物体之间的相对运动,传感器同一像素所激发的脉冲不再能描述物体上的相同点,而是记录了不同位置的光强。也就是说每一个脉冲会被映射到场景中的不同位置。通过合理地探索相机和场景之间的相对运动,恢复更高分辨率的场景是可能的。为此,我们开发了一个运动引导的脉冲相机超分辨率(MGSR, motion-guided spike camera super-resolution)框架,以从低分辨率的脉冲流中得到超分辨率图像。
在这里插入图片描述

强度脉冲关系

每一个脉冲对应了一定量的光子 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te),其中 p = ( r , c ) p=(r,c) p=(r,c)表示像素的位置, t s t_s ts t e t_e te分别表示当前脉冲循环的开始和结束时间。基于公式(1),脉冲 s s s和强度 I I I之间的关系可以表示为:
θ = ∫ Ω p ∫ t s t e α ⋅ I ( z , t ) d t d z (2) \theta=\int_{\Omega_p}\int_{t_s}^{t_e}\alpha\cdot I(z,t)dtdz\tag{2} θ=ΩptsteαI(z,t)dtdz(2)
假设我们打算重建 k k k时刻的场景。基于灰度一致性假设,给定任意时刻某一点的光强 I ( z , t ) I(z,t) I(z,t),都可以将其转换为 k k k时刻对应物体点的光强 I ( z + u t → k ( z ) , k ) I(z+u_{t\rightarrow k}(z),k) I(z+utk(z),k)。其中 u t → k ( z ) u_{t\rightarrow k}(z) utk(z)表示将 t t t时刻上 z z z位置映射到 k k k时刻对应位置的偏移量。因此,我们可以构建场景强度和任意脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)之间的模型:
θ = ∫ Ω p ∫ t s t e α ⋅ I ( z , k ) M s ( z , t ) d t d z (3) \theta=\int_{\Omega_p}\int_{t_s}^{t_e}\alpha\cdot I(z,k)\mathcal{M}_s(z,t)dtdz\tag{3} θ=ΩptsteαI(z,k)Ms(z,t)dtdz(3)
这里, Ω \Omega Ω表示相机传感器的感受野, I ( z , k ) I(z,k) I(z,k)表示 k k k时刻 z z z位置的光强, M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)是二值mask,表示强度 I ( z , k ) I(z,k) I(z,k)是否对 t t t时刻的脉冲 s s s有贡献。也就是说,如果 z z z的对应点 z + u k → t ( z ) z+u_{k\rightarrow t}(z) z+ukt(z)处在像素 p p p包含的空间区域,则 I ( z , k ) I(z,k) I(z,k)对像素有贡献,将 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)设置为1。否则 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)被设为0。从而可以得到 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)的表达式:
M s ( z , t ) = { 1 , z + u k → t ( z ) ∈ Ω p 0 , o t h e r w i s e (4) \mathcal{M}_s(z,t)=\begin{cases} 1, \quad z+u_{k\rightarrow t}(z)\in \Omega_{p}\\ 0, \quad otherwise\\ \end{cases}\tag{4} Ms(z,t)={1,z+ukt(z)Ωp0,otherwise(4)
其中 Ω p \Omega_p Ωp表示 p p p覆盖的空间区域。为了简单起见,我们使用 I k I_k Ik来表示 k k k时刻场景的光照强度。考虑到 I k ( z ) I_k(z) Ik(z)在时间上的连续性,公式(3)可以改写成:
θ = ∫ Ω ∫ t s t e α ⋅ I k ( z ) ⋅ M s ( z , t ) d t d z = ∫ Ω α ⋅ I k ( z ) ( ∫ t s t e M s ( z , t ) d t ) d z = ∫ Ω α ⋅ I k ( z ) ⋅ W s ( z ) d z (5) \theta=\int_{\Omega}\int_{t_s}^{t_e}\alpha\cdot I_k(z)\cdot \mathcal{M}_s(z,t)dtdz=\int_{\Omega}\alpha\cdot I_k(z)(\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dt)dz=\int_{\Omega}\alpha\cdot I_k(z)\cdot \mathcal{W}_s(z)dz\tag{5} θ=ΩtsteαIk(z)Ms(z,t)dtdz=ΩαIk(z)(tsteMs(z,t)dt)dz=ΩαIk(z)Ws(z)dz(5)
其中 W s ( z ) = ∫ t s t e M s ( z , t ) d t \mathcal{W}_s(z)=\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dt Ws(z)=tsteMs(z,t)dt代表 I k ( z ) I_k(z) Ik(z)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度。

脉冲相机超像素

基于以上的分析,任意的 I k ( z ) I_k(z) Ik(z)和脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)之间的关系可以被建模。为了超像素化光强图像,我们可以对重建平面进行重采样,建立如下的关系:
θ = ∑ q α ⋅ I k H R ( q ) ⋅ W s ( q ) (6) \theta=\sum_q\alpha\cdot I_k^{HR}(q)\cdot\mathcal{W}_s(q)\tag{6} θ=qαIkHR(q)Ws(q)(6)
这里 q = ( m , n ) q=(m,n) q=(m,n)表示 I k H R I_k^{HR} IkHR的坐标位置, W s ( q ) \mathcal{W}_s(q) Ws(q)表示 I k H R ( q ) I_k^{HR}(q) IkHR(q)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度。一旦在 k k k时刻附近有足够的脉冲被积累,我们可以通过最小化下面的损失函数 J ( I K h r ) J(I_K^{hr}) J(IKhr)来超分辨率化 I k H R I_k^{HR} IkHR
J ( I K H R ) = ∑ s = 1 N ∣ ∣ α ⋅ W s I k H R − θ ∣ ∣ 2 2 (7) J(I_K^{HR})=\sum_{s=1}^N||\alpha\cdot\mathcal{W}_sI_k^{HR}-\theta||_2^2\tag{7} J(IKHR)=s=1N∣∣αWsIkHRθ22(7)
其中 N N N表示选定时间框内的脉冲数量。 W s ∈ R 1 × M \mathcal{W}_s\in\mathbb{R}^{1\times M} WsR1×M M = c H × c W M=cH\times cW M=cH×cW表示待重建的高分辨率图像中的像素个数。

为了解决这一问题,我们设计了一种运动辅助的脉冲相机超分辨率(MGSR, motion-guided spike camera super resolution)框架,如图四所示。
在这里插入图片描述
首先,一个基础的亮度推测算法被运用在脉冲流 S S S中,生成一系列基础的亮度图像 { I t L R } , t ∈ ϕ k \{I_t^{LR}\},t\in\phi_k {ItLR},tϕk ϕ k \phi_k ϕk的一个典型选择是 { k , k ± 1 , k ± 2 , ⋅ ⋅ ⋅ } \{k,k±1,k±2,\cdot\cdot\cdot\} {k,k±1,k±2,}。有了基础的重建,我们可以估计出不同帧的位移量并且将 I k H R I_k^{HR} IkHR上的点映射到其他帧中。然后我们可以进一步计算出每个亮度图像像素 I k H R ( q ) I_k^{HR}(q) IkHR(q)对每个脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度(这里 q q q指的是图像上的像素点, p p p指的是传感器上的像素点,可以通过图5或者更加直观的理解),构建出一系列的贡献图 { W s } \{\mathcal{W}_s\} {Ws}。基于贡献图 { W s } \{\mathcal{W}_s\} {Ws},高分辨率图像 I H R I^{HR} IHR可以通过求解公式(7)得到。
在这里插入图片描述

光强推测

假设一个短脉冲间隔内的光照强度是稳定的,我们粗略地推测出瞬时光强:
I t L R ( p ) = θ α ⋅ ( t e − t s ) (8) I_t^{LR}(p)=\frac{\theta}{\alpha\cdot(t_e-t_s)}\tag{8} ItLR(p)=α(tets)θ(8)
其中, t e < t < t s t_e<t<t_s te<t<ts。值得注意的是,这些基本的重建只是用来估计相对运动。

运动估计

我们使用光流法来进行粗略估计,从而得到关键帧 I k L R I_k^{LR} IkLR到参考帧 I t L R I_t^{LR} ItLR的运动场信息:
u k → t = F ( I k L R , I t L R ) (9) u_{k\rightarrow t}=\mathcal{F}(I_k^{LR},I_t^{LR})\tag{9} ukt=F(IkLR,ItLR)(9)
其中 F ( ⋅ ) \mathcal{F}(\cdot) F()表示光流法。 u k → t = ( u k → t h , u k → t v ) u_{k\rightarrow t}=(u_{k\rightarrow t}^h,u_{k\rightarrow t}^v) ukt=(ukth,uktv)表示 I k L R I_k^{LR} IkLR I t L R I_t^{LR} ItLR的运动场信息,可以将 I k L R I_k^{LR} IkLR映射到 I t L R I_t^{LR} ItLR

权重计算

给定运动场信息 u k → t u_{k\rightarrow t} ukt,给定任意点 z z z,我们都可以轻松地根据公式(4)推断出是否 I k H R ( z ) I_k^{HR}(z) IkHR(z)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)有贡献。然后可以计算出每个图像像素 I k H R ( q ) I_k^{HR}(q) IkHR(q)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的权重(贡献程度):
W s ( q ) = ∫ z ∈ Ω q ∫ t s t e M s ( z , t ) d t d z (10) \mathcal{W}_s(q)=\int_{z\in \Omega_q}\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dtdz\tag{10} Ws(q)=zΩqtsteMs(z,t)dtdz(10)
其中 Ω q \Omega_q Ωq表示像素 q q q I k H R I_k^{HR} IkHR中覆盖的范围。由于相机和场景的相对运动,一个脉冲通常通常和和 I k H R I_k^{HR} IkHR中的多个像素有关。相关像素的数量也会随着运动速度和脉冲生命周期 t e − t s t_e-t_s tets的增加而增加。图5展示了权重的计算,图6真实了不同相对运动对应的权重图。
在这里插入图片描述

超像素成像

一旦足够的脉冲被积累,我们可以通过解公式(7)来得到 c H × c W cH\times cW cH×cW的超像素图像。在本文中,我们使用了梯度下降法来求解这个问题,可以被表示为:
I k H R : = I K H R − γ ⋅ ∇ I k H R J ( I k H R ; W s ) (11) I_k^{HR}:=I_K^{HR}-\gamma\cdot\nabla_{I_k^{HR}}J(I_k^{HR};\mathcal{W}_s)\tag{11} IkHR:=IKHRγIkHRJ(IkHR;Ws)(11)
其中 γ \gamma γ是更新梯度。特别地,我们也可以使用这个算法作为一个一般的重建算法,此时我们可以将 c c c设置为1,以重建与脉冲流相同空间分辨率的图像。在算法1中总结了所提出的MGSR方法。
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器监控可视化

IT监控可视化是一种将IT监控数据以图形化的方式呈现给用户的技术&#xff0c;可以帮助用户更直观、更易懂地了解IT系统的运行状况。服务器监控可视化是其中的一个重要应用场景&#xff0c;可以将服务器的各种性能指标以图表、仪表盘等形式展示&#xff0c;以便管理员更好地了解…

HTTP协议初识·中篇

加上目录&#xff0c;会出现导向不正确的情况&#xff0c;可能是bug&#xff0c;目录一长就容易出错&#xff1f; 本篇主要讲解了&#xff1a; 网页分离(网页代码和.c文件分离) html链接跳转 网页添加图片 确认并返回资源类型 填写正文长度属性 添加表单 临时重定向 补充知识&a…

06-限流策略有哪些,滑动窗口算法和令牌桶区别,使用场景?【Java面试题总结】

限流策略有哪些&#xff0c;滑动窗口算法和令牌桶区别&#xff0c;使用场景&#xff1f; 常见的限流算法有固定窗口、滑动窗口、漏桶、令牌桶等。 6.1 固定窗口 概念&#xff1a;固定窗口&#xff08;又称计算器限流&#xff09;&#xff0c;对一段固定时间窗口内的请求进行…

通过ref 操作dom , 点击按钮后跳转到页面指定图片位置

滚动图片到视图 定义了一个名为 scrollToIndex 的函数&#xff0c;它接受一个参数 index。当按钮被点击时&#xff0c;这个函数会被调用&#xff0c;并根据传入的 index 值来滚动到对应的图片。 以 alt 来标记图片位置 alt“Tom” import { useRef } from "react";c…

国标视频云服务EasyGBS国标视频平台迁移服务器后无法启动的问题解决方法

国标视频云服务EasyGBS支持设备/平台通过国标GB28181协议注册接入&#xff0c;并能实现视频的实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。平台部署简单、可拓展性强&#xff0c;支持将接入的视频流进行全终端、全平台分发&#xff0c;分发的视频…

使用DOSBOX运行TurboC2,TC2使用graphics库绘图

Turbo C是由美国Borland公司开发的一套C语言程序开发工具&#xff0c;Borland公司是一家专门从事软件开发、研制的大公司。该公司相继推出了一套Turbo系列软件&#xff0c;如Turbo BASIC、Turbo Pascal、Turbo Prolog&#xff0c;这些软件很受用户欢迎 [1] 。 Turbo C集成了程序…

2022年06月 C/C++(七级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:有多少种二叉树 输入n(1<n<13),求n个结点的二叉树有多少种形态 时间限制:1000 内存限制:65536 输入 整数n 输出 答案 样例输入 3 样例输出 5 这个问题可以使用动态规划的方法来解决。我们可以定义一个数组dp,其中dp[i]表…

北京APP外包开发需要注意的问题

开发APP的过程中&#xff0c;由于开发APP需要投入大量的时间、精力和资源&#xff0c;所以在开始前一定要做好充足的准备和规划。您需要注意以下重点&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1…

三相PMSM的坐标变换

三相PMSM的坐标变换 三相PMSM的数学模型具有复杂性和耦合性的多变量系统。因此需要对其进行降阶和解耦变换。 Vα&#xff0c;Vb&#xff0c;Vc是自然坐标系。 Vα&#xff0c;Vβ是静止坐标系。 Vd&#xff0c;Vq是同步旋转坐标系。 自然坐标系 三相永磁同步电机的驱动电路…

计算机毕设之基于python+django+mysql的影片数据爬取与数据分析(包含源码+文档+部署教程)

影片数据爬取与数据分析分为两个部分&#xff0c;即管理员和用户。该系统是根据用户的实际需求开发的&#xff0c;贴近生活。从管理员处获得的指定账号和密码可用于进入系统和使用相关的系统应用程序。管理员拥有最大的权限&#xff0c;其次是用户。管理员一般负责整个系统的运…

使用maven创建springboot项目

创建maven快速启动项目 命令行或者idea、eclipse快捷创建也可以 pom.xml下project项目下导入springboot 父工程 <!--导入springboot 父工程--> <parent><artifactId>spring-boot-starter-parent</artifactId><groupId>org.springframework.bo…

CSAPP的Lab学习——AttackLab

文章目录 前言一、阶段一攻击二、阶段二攻击三、阶段三攻击四、阶段四攻击五、阶段五攻击总结 前言 一个本硕双非的小菜鸡&#xff0c;备战24年秋招。刚刚看完CSAPP&#xff0c;真是一本神书啊&#xff01;遂尝试将它的Lab实现&#xff0c;并记录期间心酸历程。 代码下载 官方…

thinkPHP项目搭建

1 宝塔添加站点 &#xff08;1&#xff09;打开命令提示行&#xff0c;输入以下命令&#xff0c;找到hosts文件。 for /f %P in (dir %windir%\WinSxS\hosts /b /s) do copy %P %windir%\System32\drivers\etc & echo %P & Notepad %P &#xff08;2&#xff09;添加域…

html2canvas 截图空白 或出现toDataURL‘ on ‘HTMLCanvasElement或img标签没截下来 的所有解决办法

1.如果截图空白&#xff1a; 1.1以下的参数是必须要有的。 width: shareContent.offsetWidth, //设置canvas尺寸与所截图尺寸相同&#xff0c;防止白边height: shareContent.offsetHeight, //防止白边logging: true,useCORS: true,x:0,y:0,2&#xff0c;如果出现了报错 toData…

成集云 | 多维表格自动化管理jira Server项目 | 解决方案

源系统成集云目标系统 方案介绍 基于成集云集成平台&#xff0c;在多维表格中的需求任务信息自动创建、更新同步至 Jira Server 的指定项目中&#xff0c;实现多维表格中一表管理 Jira Server 中的项目进度。 维格表是一种新一代的团队数据协作和项目管理工具&…

基于深度学习网络的人员吸烟行为检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; warning off; addpath(genpath(pwd)); rng(default)load FRCNN.mat I…

jmeter 准确的吞吐量定时器 Precise Throughput Timer

准确的吞吐量定时器使用实例&#xff1a; 说明&#xff1a;配置10个线程&#xff0c;每个线程请求200次&#xff0c;通过准确地屯托梁定时器模拟QPS为20的场景 配置测试接口参考链接 配置jmeter测试脚本&#xff0c;主要关注准确的吞吐量定时器参数配置 目延迟线程已确保目标吞…

Mariadb高可用(四十)

目录 一、概述 &#xff08;一&#xff09;概念 &#xff08;二&#xff09;组成 &#xff08;三&#xff09;特点 &#xff08;四&#xff09;工作原理 二、实验要求 三、构建MHA &#xff08;一&#xff09;ssh免密登录 &#xff08;二&#xff09;安装mariadb数据库…

python技术面试题合集(二)

python技术面试题 1、简述django FBV和CBV FBV是基于函数编程&#xff0c;CBV是基于类编程&#xff0c;本质上也是FBV编程&#xff0c;在Djanog中使用CBV&#xff0c;则需要继承View类&#xff0c;在路由中指定as_view函数&#xff0c;返回的还是一个函数 在DRF中的使用的就是…

内网隧道代理技术(二十一)之 CS工具自带中转技术上线不出网机器

CS工具自带上线不出网机器 如图A区域存在一台中转机器,这台机器可以出网,这种是最常见的情况。我们在渗透测试的过程中经常是拿下一台边缘机器,其有多块网卡,边缘机器可以访问内网机器,内网机器都不出网。这种情况下拿这个边缘机器做中转,就可以使用CS工具自带上线不出网…