MATLAB矩阵的操作(第二部分)

师从清风

矩阵的创建方法


在MATLAB中,矩阵的创建方法主要有三种,分别是:直接输入法、函数创建法和导入本地文件中的数据。

直接输入法

输入矩阵时要以中括号“[ ]”作为标识符号,矩阵的所有元素必须都在中括号内。
矩阵的同行元素之间用空格或逗号分隔,行与行之间用分号或回车键分隔。

a = [1 2 3; 4 5 6]
b = [1,2,3; 4,5,6]
c = [2  56  7]
d = [3 6;6 9]   % 还可以既加分号又加回车键进行换行

如果不想显示输出结果,可以在语句的最后用英文分号“;”结束。(工作区还是可以找到我们创建的矩阵)

e = [2, 35, 7];

函数创建法


MATLAB提供了一些函数,这些函数可以用来生成某些特定的矩阵,我们这里介绍几个最常用到的函数。

 zerosoneseye


这三个函数可用来分别创建全为0的矩阵、全为1的矩阵和单位矩阵。
以zeros函数为例,其常见的用法有两种:
(1)zeros(n)可以创建一个n行n列全为0的矩阵;
(2)zeros(m,n)可以创建一个m行n列全为0的矩阵。
a = zeros(3)  b = zeros(2,3)  c = ones(5)   d = ones(1,4)
单位矩阵:主对角线元素为 1 且其他位置元素为 0 。
e = eye(4)
f = eye(4,3)  

g = eye(3,4)  

 rand、randi和randn


这三个函数分别用来创建均匀分布的随机数、均匀分布的随机整数和标准正态分布的随机数


rand函数可用来创建区间0到1均匀分布的随机数,其最常用的方法有两种:
(1)rand(n)可以创建一个n行n列的随机数矩阵;
(2)rand(m,n)可以创建一个m行n列的随机数矩阵。
由rand函数创建的随机数矩阵的每个元素都随机取样自0和1之间的均匀分布。
rand(3)     rand(3,2)
randi函数是用来创建均匀分布的随机整数(randi后的i是integer的缩写),其最一般的使用方法为:randi([imin,imax],m,n),可以用来创建一个m行n列的随机数矩阵,该随机数矩阵中的每个元素都是从区间[imin,imax]内随机抽取的整数。
例子:假设我们要模拟投掷100次骰子,骰子有6个面,那么我们可以使用randi([1,6],1,100)得到一个长度为100的行向量,向量中的每个元素都是取自1,2,3,4,5,6中的一个整数。
randi([1,6],1,100)  % 这里我生成一个行向量,也可以生成列向量
另外,如果imin等于1,那么可以简写为randi(imax,m,n)
randi(6,1,100)
如果m和n相同,即生成一个n行n列的方阵,那么可以直接写成randi([imin,imax],n)。
randi([-3 3],5)  
randn函数用来创建标准正态分布的随机数(randn后的n是norm distribution的缩写),其使用方法和rand函数类似:
(1)randn(n)可以创建一个n行n列的随机数矩阵;
(2)randn(m,n)可以创建一个m行n列的随机数矩阵。
注:1、由randn函数创建的随机数矩阵的每个元素都随机取样自标准正态分布。
        2、标准正态分布:以0为均值、以1为标准差的正态分布,记为N(0,1).

diag和blkdiag


diag函数可用来创建对角矩阵或者获取矩阵的对角元素(diagonal 对角的)。
情况1:如果输入的第一个参数是向量,则表示创建对角矩阵。
    diag(v,k) 将向量v的元素放置在第k条对角线上,其他位置元素为0。
    k=0 表示主对角线,k>0 位于主对角线上方,k<0 位于主对角线下方。
    如果k=0, 可以直接写成diag(v)。
diag([1,2,3])  % 或者写成diag([1,2,3], 0)  

diag([1,2,3],-1)

情况2:如果输入的第一个参数是矩阵,则表示获取矩阵的对角元素。
    diag(A,k) 返回A的第k条对角线上元素的构成的列向量。
    k表示对角线编号,我们将其指定为一个整数。
    k=0 表示主对角线,k>0 位于主对角线上方,k<0 位于主对角线下方。
    如果k=0, diag(A, 0)可以直接写成diag(A)。


blkdiag函数可用来创建分块对角矩阵(block diagnoal 分块对角)。
分块对角矩阵是相对于常规的对角矩阵而言的,常规的对角矩阵沿对角线具有单个元素,而分块对角矩阵的对角线的元素是矩阵。
我们可采用以下形式表示一个分块对角矩阵:
A1 = [1,2,3;4,5,6]
A2 = [7,8;9,10]
A3 = [11,12;13,14;15,16]
blkdiag(A1,A2,A3)

导入本地文件中的数据


MATLAB可读取本地的文件,支持的常见格式如下:
.txt、.dat 或 .csv(适用于带分隔符的文本文件)
.xls、.xlsb、.xlsm、.xlsx、.xltm、.xltx 或 .ods(适用于电子表格文件)

矩阵元素的引用

双下标索引


我们可以使用矩阵元素所处的行(row)和列(column)来进行引用矩阵的某一个元素,方式为:a(row_ind, column_ind). 
 

size函数

可以使用size函数来计算矩阵的大小

有三种常见的用法:
(1)size(A) 返回一个行向量,其元素是 A 的相应维度的长度。
A = ones(4,6) % 全为1的矩阵
s = size(A)   % 返回[4,6],表示有4行和6列


(2)size(A,dim)返回在维度dim上的长度。dim=1表示行;dim=2表示列
r_num = size(A,1)  % 行数  r_num=4
c_num = size(A,2)   % 列数 c_num=6

注意:即使A是一个向量,size(A)返回的结果也是一个向量,而不是向量的长度。
A = 1:5;  % 行向量:[1 2 3 4 5]
size(A)=1  5
(3)size函数可以有两个返回值
第一个返回的元素用来保存行数;第二个返回的元素用来保存列数
A = zeros(3,5)
[r, c] = size(A)     %输出 r=3  c=5

length函数和numel函数也可以用在矩阵上。
length函数会返回行和列的较大值
A = ones(3,4)
length(A)=4
numel函数会返回矩阵中元素的总数
numel(A)=3*4=12

有时候我们需要取出矩阵的某一行或者某一列。以取出矩阵A的第一行为例,我们可以使用代码A(1, 1:end),即row_ind取1表示第一行,column_ind取1:end表示从1到最后一列的索引。
A = randi([2,10],4,5) 
A(1,1:end)
这时候我们可以直接将其简写为:A(1, :),逗号后面是列索引的位置,加一个冒号就表示取出每一列的元素。
A(1,:)
同理,要取第一列的所有元素,我们可以使用代码:A(:, 1)
A(:, 1)
总结:
A(:, n) 表示矩阵A的第n列的所有元素。
A(m, :) 表示矩阵A的第m行的所有元素。

线性索引(单下标)


使用单个下标对矩阵进行索引这种单下标的索引方法称为线性索引。
事实上,在MATLAB中,矩阵的数据在计算机的内存中被存储为单列。以下图为例,下面的矩阵虽然显示为 3×3 矩阵,但MATLAB在内存中将它存储为单列,由它的各列顺次连接而成。

我们可以利用线性索引来取出矩阵中的元素,尽管这种方式并不那么直观。
举个例子:

A(:)命令可以将A中的所有元素按照线性索引的方式重构成一个列向量,这个命令后面会经常用到。

sub2ind和ind2sub函数

可用于在矩阵的原始索引(双下标)和线性索引之间进行转换(用到频率不高)(subscript 下标)。
sub2ind将矩阵的下标转换为线性索引
ind = sub2ind(sz,row,col) 针对大小为 sz 的矩阵返回由 row 和 col 指定的行列下标的对应线性索引 ind。此处,sz 是包含两个元素的向量,其中 sz(1) 指定行数,sz(2) 指定列数。
ind2sub将线性索引转换为下标[row,col] = ind2sub(sz,ind) 返回数组 row 和 col,其中包含与大小为 sz 的矩阵的线性索引 ind 对应的等效行和列下标。此处,sz 是包含两个元素的向量,其中 sz(1) 指定行数,sz(2) 指定列数。
 

矩阵元素的修改和删除


1、可以直接利用等号赋值的方法对引用位置的元素进行修改,用法和对向量元素的修改类似。

2、可以使用线性索引(单下标的索引)的方式对矩阵的元素进行修改:

3、对矩阵进行拓展
通过将一个或多个元素置于矩阵现有的行和列索引边界之外,可以将它们添加到矩阵中。MATLAB 会自动用 0 填充矩阵,使其保持为矩形。

还可以通过在现有索引范围之外插入新矩阵来扩展其大小。

如果我们将等号右侧变成空向量[ ],则可以删除对应位置的元素。需要注意的是,通常只能删除矩阵的整行或者整列,否则会报错。


注意,也可以通过线性索引来删除矩阵的元素。使用线性索引删除后,MATLAB会将矩阵中剩下的元素按照线性索引的顺序放入到一个向量中。另外,使用线性索引可以删除任意位置的元素,不需要删除矩阵的一整行或者一整列。

矩阵的拼接和重复

矩阵的拼接


有时候我们需要对多个矩阵进行拼接,变成一个大的矩阵。
根据矩阵拼接的方向,我们可以分为横向(水平)拼接和纵向(垂直)拼接,如下图所示:


如上图所示:横向拼接要求矩阵的行数相同;纵向拼接要求矩阵的列数相同。
在MATLAB中,我们可以使用命令[A, B] 或 [A  B]对矩阵A和B进行横向拼接,也可以使用MATLAB中的内置函数:horzcat(A,B)
A = [1 6 7; 4 5 7]
B = [3 1; 5 10]
[A, B]

[A B] % 用空格隔开,可以有多个空格
horzcat(A,B)
 cat(2,A,B)


类似的,我们可以使用命令[A; B]对矩阵A和B进行纵向拼接,也可以使用MATLAB中的内置函数:vertcat(A,B)
A = [2 4 5;2 2 4]
B = [1 8 6;6 3 10;1 5 5]
[A; B]
[A
 B]  % 也可以使用回车键进行纵向拼接
vertcat(A,B)
cat(1,A,B)

下面是cat函数的帮助链接:
https://ww2.mathworks.cn/help/matlab/ref/double.cat.html
命令cat(dim,A,B)表示沿维度 dim 方向将矩阵B拼接到矩阵A的末尾。
dim = 1时表示从上自下沿着行方向拼接,即纵向拼接,因此cat(1,A,B)等价于vertcat(A,B)
dim = 2时表示从左自右沿着列方向拼接,即横向拼接,因此cat(2,A,B)等价于horzcat(A,B)

大小不匹配会报错


矩阵的重复


有时候我们需要对同一个矩阵进行重复的堆叠。
例如将矩阵A的内容堆叠在m行n列的新矩阵中,这个新矩阵每一行由n个A组成,每一列由m个A组成。
下面我们画一个示意图:

在MATLAB中,对同一个矩阵进行重复的堆叠的代码为repmat(A,m,n)。


对向量或者矩阵中的元素进行重复,使用到的函数是repelem。(使用较少)
情况1:重复向量v中的元素:repelem(v,n)
当n为一个正整数时,表示把向量v中的每一个元素都重复n次;
n也可以为一个向量,其长度必须和v的长度相同,它可以将v的每个元素指定重复n对应元素的次数。

情况2:重复矩阵A中的元素:repelem(A,m,n)
m和n分别表示沿着行方向(从上至下)和列方向(从左至右)将矩阵元素重复的次数,这里的m和n可以是正整数,也可以是向量。
如果m是向量,则m的长度要和矩阵A的行数相同;如果n是向量,则n的长度要和矩阵A的列数相同。

若有侵权,请联系作者

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/663644.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UnitySahder实现Phong/BlinnPhong模型

目录 Phong模型公式&#xff1a; BlinnPhong模型公式&#xff1a; 实现&#xff1a; Phong模型&#xff1a; BlinnPhong模型&#xff1a; Phong模型公式&#xff1a; 结果自发光&#xff0b;环境光漫反射高光反射 BlinnPhong模型公式&#xff1a; 对Phong模型的简单修改&…

Git―基本操作

Git ⛅认识 Git⛅安装 GitCentos(7.6)Ubuntu ⛅Git―基本操作创建本地仓库&#x1f342;配置本地仓库&#x1f342;工作区, 暂存区, 版本库&#x1f342;版本库工作区 添加文件&#x1f342;查看文件&#x1f342;修改文件&#x1f342;版本回退&#x1f342;☃️案例 撤销修改…

k8s中cert-manager管理https证书

前言 目前https是刚需,但证书又很贵,虽然阿里云有免费的,但没有泛域名证书,每有一个子域名就要申请一个证书,有效期1年,1年一到全都的更换,太麻烦了。经过搜索,发现了自动更新证书神器cert-manager;当然cert-manager是基于k8s的。 安装采用Helm方式 Chart地址: ht…

THREE.JS动态场景开发实战【赛博朋克】

在本教程中&#xff0c;我们将探索如何创建类似 Three.js 的赛博朋克场景&#xff0c;灵感来自 Pipe 网站上的背景动画。 我们将指导你完成使用 Three.js 编码动态场景的过程&#xff0c;包括后处理效果和动态光照&#xff0c;所有这些都不需要任何着色器专业知识。 我用这个场…

西瓜书学习笔记——k近邻学习(公式推导+举例应用)

文章目录 算法介绍实验分析 算法介绍 K最近邻&#xff08;K-Nearest Neighbors&#xff0c;KNN&#xff09;是一种常用的监督学习算法&#xff0c;用于分类和回归任务。该算法基于一个简单的思想&#xff1a;如果一个样本在特征空间中的 k k k个最近邻居中的大多数属于某个类别…

vue+element 换肤功能

1.首先建深色和浅色两个主题样式变量样式表&#xff0c;样式表名和按钮中传入的值一样&#xff0c;本例中起名为default.scss和dark.scss 2.在data中定义主题变量名 zTheme:‘defalut’&#xff0c;默认引用defalut.scss, 在点击按钮时切换引用的样式表&#xff0c;达到换肤效果…

结合实例谈谈SPSS多元线性回归分析结果解读与报告撰写

为研究某地区房地产市场的价格与相关影响因素之间的关系&#xff0c;现从该地区采集了 20 份样本&#xff0c;数据如下表&#xff0c;请给出销售价格与相关影响因素之间的函数表达式&#xff0c;并从统计学角度分析这些因素之间的关系&#xff0c;最后预测 X 小区的平均销售价格…

【洛谷学习自留】p1055 ISBN 号码

解题思路&#xff1a; 1.首先考虑怎么分解字符串的问题&#xff0c;把字符串内的数字拿出来&#xff0c;这里我使用了String的toCharArray方法&#xff0c;将字符串内的所有字符拿出来&#xff0c;然后针对性的把所有数字轮流用于计算&#xff0c;因为数组内的数字是以字符的形…

中小学电子编程内部集中培训第三课

蜂鸣器学习 可视化代码 见链接&#xff1a; 利用小车写蜂鸣器

北朝隋唐文物展亮相广西,文物预防性保护网关保驾护航

一、霸府名都——太原博物馆收藏北朝隋朝文物展 2月1日&#xff0c;广西民族博物馆与太原博物馆携手&#xff0c;盛大开启“霸府名都——太原博物馆北朝隋文物展”。此次新春展览精选了北朝隋唐时期150多件晋阳文物珍品。依据“巍巍雄镇”“惊世古冢”“锦绣名都”三个单元&am…

某赛通电子文档安全管理系统 UploadFileList 任意文件读取漏洞复现

0x01 产品简介 某赛通电子文档安全管理系统(简称:CDG)是一款电子文档安全加密软件,该系统利用驱动层透明加密技术,通过对电子文档的加密保护,防止内部员工泄密和外部人员非法窃取企业核心重要数据资产,对电子文档进行全生命周期防护,系统具有透明加密、主动加密、智能…

用VsCode写python

1.创建一个文件夹 2.创建.py文件 print("Hello World") print("*"*10) 4.运行 在终端版本fileName python3 app.py

线性代数:线性方程组

目录 一、线性方程组概念 二、消元法求线性方程组 三、系数阵的秩与线性方程组的解 无解 唯一解 无数解 相关定理 一、线性方程组概念 二、消元法求线性方程组 三、系数阵的秩与线性方程组的解 无解 唯一解 无数解 相关定理

Redis -- hash哈希

马行软地易失蹄&#xff0c;人贪安逸易失志。 目录 关于Redis的hash hash命令 hset hget hexists hdel hkeys hvals hgetall hmget hlen hsetnx hash计数 hincrby hincrbyfloat 小结 关于Redis的hash 几乎所有的主流编程语言都提供了哈希&#xff08;hash&a…

移动机器人激光SLAM导航(三):Hector SLAM 篇

参考引用 Hector_Mapping ROS-Wiki从零开始搭二维激光SLAM机器人工匠阿杰wpr_simulation 移动机器人激光SLAM导航&#xff08;文章链接汇总&#xff09; 1. 基于滤波器的 SLAM 问题 1.1 什么是 SLAM 什么是SLAM SLAM 就是为了构建地图用的&#xff0c;这个地图可以保存下来&…

将word中插入的zotero文献转为latex引用样式

在word中&#xff0c;可以使用zotero插件插入和管理参考文献。 例如&#xff1a; 若需要将这段内容移植到latex&#xff0c;就需要将对应的引用编号用\cite{}替换。手动替换非常麻烦且容易出错。要实现自动转换&#xff0c;可在zotero中定制一种新的引文格式&#xff0c;自动将…

常见的6种软件测试用例设计方法

常见的软件测试用例设计方法&#xff0c;个人认为主要是下面这6种&#xff1a; 流程图法&#xff08;也叫场景法&#xff09;等价类划分法边界值分析判定表正交法错误推测法 这6种常见方法中&#xff0c;我分别按照定义、应用场景、使用步骤、案例讲解这4个部分进行讲解。 所…

实习|基于SSM的实习管理系统设计与实现(源码+数据库+文档)

实习管理系统目录 目录 基于SSM的实习管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能介绍 &#xff08;1&#xff09;管理员登录 &#xff08;2&#xff09;实训方向管理 &#xff08;3&#xff09;公告信息管理 &#xff08;4&#xff0…

STM32MP135开发板助力电力行业,IEC61850协议移植笔记

1.概述 IEC61850是变电站自动化系统&#xff08;SAS&#xff09;中通信系统和分散能源&#xff08;DER&#xff09;管理的国际标准。它通过标准的实现&#xff0c;实现了智能变电站的工程运作标准化。使得智能变电站的工程实施变得规范、统一和透明&#xff0c;在电力和储能系…

(java版)排序算法----【冒泡,选择,插入,希尔,快速排序,归并排序,基数排序】超详细~~

目录 冒泡排序(BubbleSort)&#xff1a; 代码详解&#xff1a; 冒泡排序的优化&#xff1a; 选择排序(SelectSort)&#xff1a; 代码详解&#xff1a; 插入排序&#xff08;InsertSort&#xff09;&#xff1a; 代码详解&#xff1a; 希尔排序(ShellSort)&#xff1a; 法一…