实验四: 基于K-近邻的车牌号识别
1 案例简介
图像的智能处理一直是人工智能领域广受关注的一类技术,代表性的如人脸识别与 CT 肿瘤识别,在人工智能落地的进程中发挥着重要作用。其中车牌号识别作为一个早期应用场景,已经融入日常生活中,为我们提供了诸多便利,在各地的停车场和出入口都能看到它的身影。车牌号识别往往分为字符划分和字符识别两个子任务,本案例我们将关注字符识别的任务,尝试用 K-NN 的方法对分割好的字符图像进行自动识别和转化。
2 作业说明
2.1 基本要求
- 完成数据的读入和表示,将图片表示成向量并和 label 对应上;
- 构建 K-NN 模型(可调库)对测试集中的图片进行预测并计算准确率;
- 分析当 K 取不同值时测试准确率的变化。
2.2 扩展要求
- 分析不同距离度量方式对模型效果的影响;
- 对比平权和加权 K-NN 的效果;
- 分析训练集大小对测试结果的影响。
3 数据概览
本次我们使用已经分割好的车牌图片作为数据集,包括数字 0-9、字母 A-Z(不包含 O 和 I)以及省份简称共 65 个类,编号从 0 到 64。数据已经分成了训练集和测试集,里面的文件夹用 label 编号命名,一个文件夹下的所有图片都属于该文件夹对应的类,每个图片都是 20 * 20 的二值化灰度图。
下面演示一下如何借助 PIL 库将图片转化为向量:
from PIL import Image
img = Image.open('data/train/0/4-3.jpg') # 打开图片
img # 显示图片from PIL import Image
img = Image.open('data/train/0/4-3.jpg') # 打开图片
img # 显示图片
import numpy as np
pixels = np.array(img) # 转化为 numpy 矩阵
pixels.shape
(20, 20)
4 模型构建
import os
from PIL import Image
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
import randomRANDOM_SEED = 2023path_train = 'data/train'
path_test = 'data/test'
4.1数据读取
-
读取图片
读取文件夹中指定数量图片
# 读取 num 张图片,将其转换为一维向量
def readImg(path, num = -1):count =0random.seed(RANDOM_SEED)img_array=[]for img_name in os.listdir(path):img_path = os.path.join(path,img_name)img = Image.open(img_path)img_array.append(np.array(img).reshape(-1))if num > 0 and num < len(img_array):img_array = random.sample(img_array,num)return img_array# 测试该函数
folder_path = path_train+'/0'
num = 5
Imgs = readImg(folder_path,num)
len(Imgs)
5
- 读取文件夹与标签
# 读取文件标签,并返回图片、标签列表
def readFile(path,nums = -1):labels =[]Imglist = []for label in os.listdir(path):path_file = os.path.join(path,label)Imgs = readImg(path_file,nums)Imglist = Imglist + Imgsfor i in range(len(Imgs)):labels.append(label)return np.array(Imglist), np.array(labels)# 测试该函数
nums = 5
x,y = readFile(path_train,nums)
x.shape,y.shape
((325, 400), (325,))
4.2 划分数据集
x_train,y_train = readFile(path_train)
x_test,y_test = readFile(path_test)
x_train.shape, y_train.shape, x_test.shape, y_test.shape # 观察训练与测试数据规模
((15954, 400), (15954,), (4665, 400), (4665,))
4.3 模型的训练
model = KNeighborsClassifier(n_neighbors=3, weights='uniform', algorithm='auto')
model.fit(x_train, y_train) # 记录训练数据
p_test = model.predict(x_test) # 预测测试图片
accuracy = accuracy_score(p_test, y_test) # 计算准确率
print(f'accuracy: {accuracy:.4f}')
accuracy: 0.7031
经过测试,在参数取值为n_neighbors=3, weights='uniform', algorithm='auto'
时,预测准确率为0.7031
5 模型优化
- 分析当 K 取不同值时测试准确率的变化;
- 分析不同距离度量方式对模型效果的影响;
- 对比平权和加权 K-NN 的效果;
- 分析训练集大小对测试结果的影响。
5.1 不同K值对准确率的变化
k_range = range(1,21)
acc_list = []
sns.set()for k in k_range: # 遍历邻居的个数 kmodel = KNeighborsClassifier(k)model.fit(x_train, y_train) # 记录训练数据p_test = model.predict(x_test) # 预测测试图片accuracy = accuracy_score(p_test, y_test) # 计算准确率acc_list.append(accuracy)print('K: {}, accuracy: {:<.4f}'.format(k, accuracy))plt.plot(k_range, acc_list) # 画图
plt.xlabel('K')
plt.ylabel('Accuracy')
plt.show()
K: 1, accuracy: 0.7168
K: 2, accuracy: 0.7220
K: 3, accuracy: 0.7031
K: 4, accuracy: 0.7074
K: 5, accuracy: 0.6969
K: 6, accuracy: 0.6965
K: 7, accuracy: 0.6956
K: 8, accuracy: 0.6924
K: 9, accuracy: 0.6913
K: 10, accuracy: 0.6911
K: 11, accuracy: 0.6898
K: 12, accuracy: 0.6857
K: 13, accuracy: 0.6825
K: 14, accuracy: 0.6806
K: 15, accuracy: 0.6776
K: 16, accuracy: 0.6742
K: 17, accuracy: 0.6707
K: 18, accuracy: 0.6686
K: 19, accuracy: 0.6662
K: 20, accuracy: 0.6673
由上图可知,在k值取2时准确率最高,随着k值增大,模型准确率程降低趋势
5.2 不同距离度量对模型效果变化
通过改变 metric
参数来测试不同的距离度量。
minkowski
:闵可夫斯基距离,默认距离度量。
D ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p D(x,y)=(\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} D(x,y)=(i=1∑n∣xi−yi∣p)p1euclidean
:欧几里得距离,两个数值向量点之间的长度
D ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 D(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} D(x,y)=i=1∑n(xi−yi)2manhattan
:曼哈顿距离,又称城市街区距离,它的计算方式有点类似于只能90度拐角的街道长度。
D ( x , y ) = ∑ i = 1 k ∣ x i − y i ∣ D(x,y)=\sum_i=1^k|x_i-y_i| D(x,y)=i∑=1k∣xi−yi∣chebyshev
:chebyshev距离是两个数值向量在单个维度上绝对值差值最大的那个值。
D ( x , y ) = max i ( ∣ x i − y i ∣ ) D(x,y)=\text{max}_i(|x_i-y_i|) D(x,y)=maxi(∣xi−yi∣)
metrics = ['minkowski', 'euclidean', 'manhattan', 'chebyshev' ]
acc_list = []for metric in metrics: # 遍历距离度量类型model = KNeighborsClassifier(metric = metric)model.fit(x_train, y_train) # 记录训练数据p_test = model.predict(x_test) # 预测测试图片accuracy = accuracy_score(p_test, y_test) # 计算准确率acc_list.append(accuracy)print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))
结果:
metric: minkowski, accuracy: 0.6969
metric: euclidean, accuracy: 0.6969
metric: manhattan, accuracy: 0.6920
metric: chebyshev, accuracy: 0.4090
绘制柱状图,可视化表示:
plt.bar(metrics, acc_list) # 画图
plt.show()
由上图可见,minkowski
, euclidean
, manhattan
三种举例向量效果类似, chebyshev
效果明显较差。
5.3 平均和加权KNN的区别
-
uniform
: 平均KNN,这意味着所有的邻居节点在投票过程中具有相同的权重。也就是说,每个邻居节点对最终结果的影响是一样的,不考虑它们与查询点的距离。 -
distance
:加权KNN,这意味着邻居节点的权重与它们到查询点的距离成反比。也就是说,距离查询点更近的邻居节点将对最终结果有更大的影响,而距离较远的邻居节点的影响较小。
weights = ['uniform', 'distance']
acc_list = []for weight in weights:model = KNeighborsClassifier(weights = weight)model.fit(x_train, y_train) # 记录训练数据p_test = model.predict(x_test) # 预测测试图片accuracy = accuracy_score(p_test, y_test) # 计算准确率acc_list.append(accuracy)print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))
结果:
metric: chebyshev, accuracy: 0.6969
metric: chebyshev, accuracy: 0.7016
绘制柱状图,可视化表示:
plt.bar(weights, acc_list) # 画图
plt.show()
由上图可见,平均与加权结果类似,加权效果较好于平均KNN。
5.4 训练集大小对模型效果的影响
train_range = [1, 5, 10, 20, 50, 100, 200, 400, 600]
acc_lst = list()for train_num in train_range:x_train, y_train = readFile(path_train, train_num)model = KNeighborsClassifier()model.fit(x_train, y_train)p_test = model.predict(x_test)accuracy = accuracy_score(p_test, y_test)acc_lst.append(accuracy)print('train: {}, accuracy: {:<.4f}'.format(train_num, accuracy))
结果:
train: 1, accuracy: 0.1972
train: 5, accuracy: 0.4264
train: 10, accuracy: 0.5035
train: 20, accuracy: 0.5906
train: 50, accuracy: 0.6568
train: 100, accuracy: 0.6707
train: 200, accuracy: 0.7005
train: 400, accuracy: 0.7065
train: 600, accuracy: 0.7025
绘制折线图,可视化表示:
plt.plot(train_range, acc_lst)
plt.xlabel('train')
plt.ylabel('Accuracy')
plt.show()
由上图可见,数据集数量越大,准确率越高,但是达到一定大小后增长变缓,甚至会有略微降低。