【机器学习】基于K-近邻的车牌号识别

实验四: 基于K-近邻的车牌号识别

1 案例简介

​ 图像的智能处理一直是人工智能领域广受关注的一类技术,代表性的如人脸识别与 CT 肿瘤识别,在人工智能落地的进程中发挥着重要作用。其中车牌号识别作为一个早期应用场景,已经融入日常生活中,为我们提供了诸多便利,在各地的停车场和出入口都能看到它的身影。车牌号识别往往分为字符划分和字符识别两个子任务,本案例我们将关注字符识别的任务,尝试用 K-NN 的方法对分割好的字符图像进行自动识别和转化。

2 作业说明

2.1 基本要求

  • 完成数据的读入和表示,将图片表示成向量并和 label 对应上;
  • 构建 K-NN 模型(可调库)对测试集中的图片进行预测并计算准确率;
  • 分析当 K 取不同值时测试准确率的变化。

2.2 扩展要求

  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

3 数据概览

本次我们使用已经分割好的车牌图片作为数据集,包括数字 0-9、字母 A-Z(不包含 O 和 I)以及省份简称共 65 个类,编号从 0 到 64。数据已经分成了训练集和测试集,里面的文件夹用 label 编号命名,一个文件夹下的所有图片都属于该文件夹对应的类,每个图片都是 20 * 20 的二值化灰度图。

下面演示一下如何借助 PIL 库将图片转化为向量:

from PIL import Image
img = Image.open('data/train/0/4-3.jpg')  # 打开图片
img  # 显示图片from PIL import Image
img = Image.open('data/train/0/4-3.jpg')  # 打开图片
img  # 显示图片

请添加图片描述

import numpy as np
pixels = np.array(img)  # 转化为 numpy 矩阵
pixels.shape
(20, 20)

4 模型构建

import os
from PIL import Image
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
import randomRANDOM_SEED = 2023path_train = 'data/train'
path_test = 'data/test'

4.1数据读取

  1. 读取图片

    读取文件夹中指定数量图片

# 读取 num 张图片,将其转换为一维向量
def readImg(path, num = -1):count =0random.seed(RANDOM_SEED)img_array=[]for img_name in os.listdir(path):img_path = os.path.join(path,img_name)img = Image.open(img_path)img_array.append(np.array(img).reshape(-1))if num > 0 and num < len(img_array):img_array = random.sample(img_array,num)return img_array# 测试该函数
folder_path = path_train+'/0'
num = 5
Imgs = readImg(folder_path,num)
len(Imgs)
5
  1. 读取文件夹与标签
# 读取文件标签,并返回图片、标签列表
def readFile(path,nums = -1):labels =[]Imglist = []for label in os.listdir(path):path_file = os.path.join(path,label)Imgs = readImg(path_file,nums)Imglist = Imglist + Imgsfor i in range(len(Imgs)):labels.append(label)return np.array(Imglist), np.array(labels)# 测试该函数
nums = 5
x,y = readFile(path_train,nums)
x.shape,y.shape
((325, 400), (325,))

4.2 划分数据集

x_train,y_train = readFile(path_train)
x_test,y_test = readFile(path_test)
x_train.shape, y_train.shape, x_test.shape, y_test.shape  # 观察训练与测试数据规模
((15954, 400), (15954,), (4665, 400), (4665,))

4.3 模型的训练

model = KNeighborsClassifier(n_neighbors=3, weights='uniform', algorithm='auto')
model.fit(x_train, y_train)  # 记录训练数据
p_test = model.predict(x_test)  # 预测测试图片
accuracy = accuracy_score(p_test, y_test)  # 计算准确率
print(f'accuracy: {accuracy:.4f}')
accuracy: 0.7031

经过测试,在参数取值为n_neighbors=3, weights='uniform', algorithm='auto'时,预测准确率为0.7031

5 模型优化

  • 分析当 K 取不同值时测试准确率的变化;
  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

5.1 不同K值对准确率的变化

k_range = range(1,21)
acc_list = []
sns.set()for k in k_range:  # 遍历邻居的个数 kmodel = KNeighborsClassifier(k)model.fit(x_train, y_train)  # 记录训练数据p_test = model.predict(x_test)  # 预测测试图片accuracy = accuracy_score(p_test, y_test)  # 计算准确率acc_list.append(accuracy)print('K: {}, accuracy: {:<.4f}'.format(k, accuracy))plt.plot(k_range, acc_list)  # 画图
plt.xlabel('K')
plt.ylabel('Accuracy')
plt.show()
K: 1, accuracy: 0.7168
K: 2, accuracy: 0.7220
K: 3, accuracy: 0.7031
K: 4, accuracy: 0.7074
K: 5, accuracy: 0.6969
K: 6, accuracy: 0.6965
K: 7, accuracy: 0.6956
K: 8, accuracy: 0.6924
K: 9, accuracy: 0.6913
K: 10, accuracy: 0.6911
K: 11, accuracy: 0.6898
K: 12, accuracy: 0.6857
K: 13, accuracy: 0.6825
K: 14, accuracy: 0.6806
K: 15, accuracy: 0.6776
K: 16, accuracy: 0.6742
K: 17, accuracy: 0.6707
K: 18, accuracy: 0.6686
K: 19, accuracy: 0.6662
K: 20, accuracy: 0.6673

请添加图片描述

由上图可知,在k值取2时准确率最高,随着k值增大,模型准确率程降低趋势

5.2 不同距离度量对模型效果变化

通过改变 metric 参数来测试不同的距离度量。

  • minkowski:闵可夫斯基距离,默认距离度量。
    D ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p D(x,y)=(\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} D(x,y)=(i=1nxiyip)p1
  • euclidean:欧几里得距离,两个数值向量点之间的长度
    D ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 D(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} D(x,y)=i=1n(xiyi)2
  • manhattan:曼哈顿距离,又称城市街区距离,它的计算方式有点类似于只能90度拐角的街道长度。
    D ( x , y ) = ∑ i = 1 k ∣ x i − y i ∣ D(x,y)=\sum_i=1^k|x_i-y_i| D(x,y)=i=1kxiyi
  • chebyshev:chebyshev距离是两个数值向量在单个维度上绝对值差值最大的那个值。
    D ( x , y ) = max i ( ∣ x i − y i ∣ ) D(x,y)=\text{max}_i(|x_i-y_i|) D(x,y)=maxi(xiyi)
metrics = ['minkowski', 'euclidean', 'manhattan', 'chebyshev' ]
acc_list = []for metric in metrics:  # 遍历距离度量类型model = KNeighborsClassifier(metric = metric)model.fit(x_train, y_train)  # 记录训练数据p_test = model.predict(x_test)  # 预测测试图片accuracy = accuracy_score(p_test, y_test)  # 计算准确率acc_list.append(accuracy)print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))

结果:

metric: minkowski, accuracy: 0.6969
metric: euclidean, accuracy: 0.6969
metric: manhattan, accuracy: 0.6920
metric: chebyshev, accuracy: 0.4090

绘制柱状图,可视化表示:

plt.bar(metrics, acc_list)  # 画图
plt.show()

请添加图片描述

由上图可见,minkowski, euclidean, manhattan三种举例向量效果类似, chebyshev效果明显较差。

5.3 平均和加权KNN的区别

  • uniform: 平均KNN,这意味着所有的邻居节点在投票过程中具有相同的权重。也就是说,每个邻居节点对最终结果的影响是一样的,不考虑它们与查询点的距离。

  • distance:加权KNN,这意味着邻居节点的权重与它们到查询点的距离成反比。也就是说,距离查询点更近的邻居节点将对最终结果有更大的影响,而距离较远的邻居节点的影响较小。

weights = ['uniform', 'distance']
acc_list = []for weight in weights:model = KNeighborsClassifier(weights = weight)model.fit(x_train, y_train)  # 记录训练数据p_test = model.predict(x_test)  # 预测测试图片accuracy = accuracy_score(p_test, y_test)  # 计算准确率acc_list.append(accuracy)print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))

结果:

metric: chebyshev, accuracy: 0.6969
metric: chebyshev, accuracy: 0.7016

绘制柱状图,可视化表示:

plt.bar(weights, acc_list)  # 画图
plt.show()

请添加图片描述

由上图可见,平均与加权结果类似,加权效果较好于平均KNN。

5.4 训练集大小对模型效果的影响

train_range = [1, 5, 10, 20, 50, 100, 200, 400, 600]
acc_lst = list()for train_num in train_range:x_train, y_train = readFile(path_train, train_num)model = KNeighborsClassifier()model.fit(x_train, y_train)p_test = model.predict(x_test)accuracy = accuracy_score(p_test, y_test)acc_lst.append(accuracy)print('train: {}, accuracy: {:<.4f}'.format(train_num, accuracy))

结果:

train: 1, accuracy: 0.1972
train: 5, accuracy: 0.4264
train: 10, accuracy: 0.5035
train: 20, accuracy: 0.5906
train: 50, accuracy: 0.6568
train: 100, accuracy: 0.6707
train: 200, accuracy: 0.7005
train: 400, accuracy: 0.7065
train: 600, accuracy: 0.7025

绘制折线图,可视化表示:

plt.plot(train_range, acc_lst)
plt.xlabel('train')
plt.ylabel('Accuracy')
plt.show()


请添加图片描述

由上图可见,数据集数量越大,准确率越高,但是达到一定大小后增长变缓,甚至会有略微降低。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/663415.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LVGL部件7

一.图片部件 1.知识概览 2.函数接口 1.lv_img_set_pivot 在LVGL&#xff08;LittlevGL&#xff09;中&#xff0c;要设置图像对象的旋转中心点&#xff0c;可以使用 lv_img_set_pivot 函数。该函数的原型如下&#xff1a; void lv_img_set_pivot(lv_obj_t * img, lv_coord_…

Flask框架开发学习笔记《5》简易服务器代码

Flask框架开发学习笔记《5》 Flask是使用python的后端&#xff0c;由于小程序需要后端开发&#xff0c;遂学习一下后端开发。 简易服务器代码 接口解析那一块很关键&#xff0c;学后端服务器这一块&#xff0c;感觉主要就是学习相应地址的接口怎么处理。 然后写清楚每个地址…

在centos 7 中安装配置Jdk、Tomcat、及Tomcat自启动

目录 一、安装配置Jdk 1.创建目录并上传文件 2.解压JDK压缩包 3.配置JDK环境变量 4.设置环境变量生效 二、安装配置Tomcat 1.上传Tomcat并解压 2.启停Tomcat 3.修改tomcat-user.xml配置 4.配置远程访问Tomcat 5.远程项目发布 三.Tomcat自启动配置 1.配置Tomcat自启…

各大厂急招鸿蒙开发员,争抢鸿蒙工程师

余承东宣布鸿蒙原生应用全面启动&#xff0c;华为开始了全面抛弃安卓的进程。 多家互联网公司也发布了鸿蒙OS的App开发工程师的岗位&#xff0c;开启了抢人大战。 有的企业开出了近百万的年薪招聘鸿蒙OS工程师&#xff0c;而华为甚至为鸿蒙OS资深架构师开出了100万-160万元的…

Kotlin快速入门系列10

Kotlin的委托 委托模式是常见的设计模式之一。在委托模式中&#xff0c;有两个对象参与处理同一个请求&#xff0c;接受请求的对象将请求委托给另一个对象来处理。与Java一样&#xff0c;Kotlin也支持委托模式&#xff0c;通过关键字by。 类委托 类的委托即一个类中定义的方…

Mysql-ReadView + MVCC-RR 与 RC

实验准备 创建脚本 CREATE TABLE user (id int(11) NOT NULL AUTO_INCREMENT,name varchar(16) CHARACTER SET utf8 COLLATE utf8_bin NULL DEFAULT NULL,age int(11) NULL DEFAULT NULL,addr varchar(256) CHARACTER SET utf8 COLLATE utf8_bin NULL DEFAULT NULL,PRIMARY …

Red Panda Dev C++项目的基本操作

最近在Red Panda Dev C上面编写程序时发现&#xff0c;很多小伙伴都会创建项目。今天我带大家看看如何使用一个项目。 一、项目的创建 创建项目 首先&#xff0c;我们需要创建一个项目。 1、打开Red Panda Dev C。 2、点击 “文件[F]” → “新建[N]” → “项目[P]...”&…

精选70套前端数据可视化大屏

分享70款还不错的前端数据可视化大屏源码 其中包含行业&#xff1a;智慧社区、智慧物业、政务系统、智慧交通、智慧工程、智慧医疗、智慧金融银行等&#xff0c;全网最新、最多&#xff0c;最全、最酷、最炫大数据可视化模板。 你可以点击在线预览查看该源码资源的最终展示效果…

从零搭建Vue3 + Typescript + Pinia + Vite + Tailwind CSS + Element Plus开发脚手架

项目代码以上传至码云&#xff0c;项目地址&#xff1a;https://gitee.com/breezefaith/vue-ts-scaffold 文章目录 前言脚手架技术栈简介vue3TypeScriptPiniaTailwind CSSElement Plusvite 详细步骤Node.js安装创建以 typescript 开发的vue3工程集成Pinia安装pinia修改main.ts创…

正点原子--STM32定时器学习笔记(1)(更新中....)

F1系列基本定时器&#xff08;TIM6 / TIM7&#xff09; 我们的目标是通过TIM6基本定时器定时500ms&#xff0c;让LED0每隔500ms闪一下&#xff01; 思路&#xff1a;使用定时器6&#xff0c;实现500ms产生一次定时器更新中断&#xff0c;在中断里执行“翻转LED0”。 定时器什…

docker容器之consul

一、consul解决了什么问题&#xff1f; 如果后端应用服务器集群节点数量很多&#xff0c;前端负载均衡器配置和管理会很麻烦的问题 &#xff08;负载均衡器的节点配置条目数量会很多&#xff0c;后端节点的网络位置发生了变化还需要修改所有调用这些后端节点的负载均衡器配置等…

Android 12.0 应用中监听系统收到的通知

Android 12.0 通知简介https://blog.csdn.net/Smile_729day/article/details/135502031?spm1001.2014.3001.5502 1. 需求 在系统内置应用中或者在第三方应用中,获取Android系统收到的通知的内容. 2. NotificationListenerService 接口 Android 系统预留了专门的API, 即 No…

Github 2F2【解决】经验帖-PPHub登入

最近在做项目时,Github总是出问题,这是一经验贴 Github 2F2登入问题【无法登入】PPhub 2F2是为了安全,更好的生态 启用 2FA 二十八 (28) 天后,要在使用 GitHub.com 时 2FA 检查 物理安全密钥、Windows Hello 或面容 ID/触控 ID、SMS、GitHub Mobile 都可以作为 2F2 的工…

jenkins 下载插件sentry-cli失败 证书过期

现状 npm set ENTRYCLI_CDNURLhttps://cdn.npm.taobao.org/dist/sentry-cli npm set sentrycli_cdnurlhttps://cdn.npm.taobao.org/dist/sentry-cli 原因是npm原域名停止解析&#xff0c;在访问上面sentry-cli的cdn资源的时候 证书过期无法下载。 解决&#xff1a; 替换证书过期…

【C语言】通讯录实现(下)

目录 1.进阶通讯录特点&#xff08;下&#xff09; 2.实现步骤 &#xff08;1&#xff09;保存增加的联系人数据到文件中 &#xff08;2&#xff09;加载保存的联系人数据 3.完整C语言通讯录代码 &#xff08;1&#xff09;contact.h (2)test.c (3)contact.c 4.结语 1.…

MongoDB从入门到实战之MongoDB简介

前言 相信很多同学对MongoDB这个非关系型数据库都应该挺熟悉的&#xff0c;在一些高性能、动态扩缩容、高可用、海量数据存储、数据价值较低、高扩展的业务场景下MongoDB可能是我们的首选&#xff0c;因为MongoDB通常能让我们以更低的成本解决问题&#xff08;包括学习、开发、…

嵌入式中Qt5.7.1添加支持openssl方法

1、openssl编译 版本&#xff1a;openssl-1.0.2g 一定要选对Qt版本对应的openssl版本&#xff0c;由于开始选的openssl版本不对&#xff0c;导致编译Qt时出现很多错误。 交叉编译 ./config no-asm shared --prefix/opt/Xilinx2018_zynq/zynq_openssl_1.0.2/ --cross-compile…

vivo发布2023 年度科技创新;阿里全新AI代理,可模拟人类操作手机

vivo 发布 2023 年度十大产品技术创新 近日&#xff0c;vivo 发布了「2023 年度科技创新」十大产品技术创新榜单&#xff0c;并将这些技术分为了 4 个板块。 「四大蓝科技」为 vivo 在去年推出的全新技术品牌&#xff0c;涵盖蓝晶芯片技术栈、蓝海续航系统、蓝心大模型、蓝河操…

2023年算法SAO-CNN-BiLSTM-ATTENTION回归预测(matlab)

2023年算法SAO-CNN-BiLSTM-ATTENTION回归预测&#xff08;matlab&#xff09; SAO-CNN-BiLSTM-Attention雪消融优化器优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 雪消融优化器( SAO) 是受自然界中雪的升华和融化行为的启发&#xff0c;开发了一种…

LeetCode 834. 树中距离之和

简单换根DP 其实就是看好变化量&#xff0c;然后让父亲更新儿子就好了&#xff5e; 上图2当根节点的时候&#xff0c;ans[2] ans[0] -sz[2]n-sz[2]; class Solution { public:vector<int> sumOfDistancesInTree(int n, vector<vector<int>>& edges) {v…