MongoDB聚合操作

文章目录

  • 聚合操作
    • 单一作用聚合
    • 聚合管道
      • 什么是 MongoDB 聚合框架
      • 管道(Pipeline)和阶段(Stage)
      • 常用的管道聚合阶段
        • 聚合表达式
        • 数据准备
        • $project
        • $match
        • $count
        • $group
      • accumulator操作符
        • $unwind
        • $limit
        • $skip
        • $sort
        • $lookup
        • 案例
          • 聚合操作案例1
          • 聚合操作案例2
    • MapReduce

聚合操作

聚合操作处理数据记录并返回计算结果。聚合操作组值来自多个文档,可以对分组数据执行各种操作以返回单个结果。聚合操作包含三类:单一作用聚合、聚合管道、MapReduce。

  • 单一作用聚合:提供了对常见聚合过程的简单访问,操作都从单个集合聚合文档。
  • 聚合管道是一个数据聚合的框架,模型基于数据处理流水线的概念。文档进入多级管道,将 文档转换为聚合结果。
  • MapReduce操作具有两个阶段:处理每个文档并向每个输入文档发射一个或多个对象的map阶段,以及reduce组合map操作的输出阶段。

单一作用聚合

MongoDB提供 db.collection.estimatedDocumentCount(), db.collection.count(), db.collection.distinct() 这类单一作用的聚合函数。 所有这些操作都聚合来自单个集合的文档。虽然这些操作提供了对公共聚合过程的简单访问,但它们缺乏聚合管道和map-Reduce的灵活性和功能。
image.png

db.collection.estimatedDocumentCount()返回集合或视图中所有文档的计数
db.collection.count()返回与find()集合或视图的查询匹配的文档计数 。等同于 db.collection.find(query).count()构造
db.collection.distinct()在单个集合或视图中查找指定字段的不同值,并在数组中返回结果。
#检索books集合中所有文档的计数
db.books.estimatedDocumentCount()
#计算与查询匹配的所有文档
db.books.count({favCount:{$gt:50}})
#返回不同type的数组
db.books.distinct("type")
#返回收藏数大于90的文档不同type的数组
db.books.distinct("type",{favCount:{$gt:90}})

注意:在分片群集上,如果存在孤立文档或正在进行块迁移,则db.collection.count()没有查询谓词可能导致计数不准确。要避免这些情况,请在分片群集上使用 db.collection.aggregate()方法。

聚合管道

什么是 MongoDB 聚合框架

MongoDB 聚合框架(Aggregation Framework)是一个计算框架,它可以:

  • 作用在一个或几个集合上;
  • 对集合中的数据进行的一系列运算;
  • 将这些数据转化为期望的形式;

从效果而言,聚合框架相当于 SQL 查询中的GROUP BY、 LEFT OUTER JOIN 、 AS等。

管道(Pipeline)和阶段(Stage)

整个聚合运算过程称为管道(Pipeline),它是由多个阶段(Stage)组成的, 每个管道:

  • 接受一系列文档(原始数据);
  • 每个阶段对这些文档进行一系列运算;
  • 结果文档输出给下一个阶段;

image.png
聚合管道操作语法

pipeline = [$stage1, $stage2, ...$stageN];
db.collection.aggregate(pipeline, {options})
  • pipelines 一组数据聚合阶段。除 o u t 、 out、 outMerge和$geonear阶段之外,每个阶段都可以在管道中出现多次。
  • options 可选,聚合操作的其他参数。包含:查询计划、是否使用临时文件、 游标、最大操作时间、读写策略、强制索引等等

image.png

常用的管道聚合阶段

聚合管道包含非常丰富的聚合阶段,下面是最常用的聚合阶段

阶段描述SQL等价运算符
$match筛选条件WHERE
$project投影AS
$lookup左外连接LEFT OUTER JOIN
$sort排序ORDER BY
$group分组GROUP BY
s k i p / skip/ skip/limit分页
$unwind展开数组
$graphLookup图搜索
f a c e t / facet/ facet/bucket分面搜索

文档:Aggregation Pipeline Stages — MongoDB Manual

聚合表达式

获取字段信息

$<field>  : 用 $ 指示字段路径
$<field>.<sub field>  : 使用 $  和 .  来指示内嵌文档的路径

常量表达式

$literal :<value> : 指示常量 <value>

系统变量表达式

$$<variable>  使用 $$ 指示系统变量
$$CURRENT  指示管道中当前操作的文档

数据准备

准备数据集,执行脚本

var tags = ["nosql","mongodb","document","developer","popular"];
var types = ["technology","sociality","travel","novel","literature"];
var books=[];
for(var i=0;i<50;i++){var typeIdx = Math.floor(Math.random()*types.length);var tagIdx = Math.floor(Math.random()*tags.length);var tagIdx2 = Math.floor(Math.random()*tags.length);var favCount = Math.floor(Math.random()*100);var username = "xx00"+Math.floor(Math.random()*10);var age = 20 + Math.floor(Math.random()*15);var book = {title: "book-"+i,type: types[typeIdx],tag: [tags[tagIdx],tags[tagIdx2]],favCount: favCount,author: {name:username,age:age}
};
books.push(book)
}
db.books.insertMany(books);

$project

投影操作, 将原始字段投影成指定名称, 如将集合中的 title 投影成 name

 db.books.aggregate([{$project:{name:"$title"}}]) 

$project 可以灵活控制输出文档的格式,也可以剔除不需要的字段

 db.books.aggregate([{$project:{name:"$title",_id:0,type:1,author:1}}]) 

从嵌套文档中排除字段

db.books.aggregate([{$project:{name:"$title",_id:0,type:1,"author.name":1}}
])
或者
db.books.aggregate([{$project:{name:"$title",_id:0,type:1,author:{name:1}}}
])

$match

m a t c h 用于对文档进行筛选,之后可以在得到的文档子集上做聚合, match用于对文档进行筛选,之后可以在得到的文档子集上做聚合, match用于对文档进行筛选,之后可以在得到的文档子集上做聚合,match可以使用除了地理空间之外的所有常规查询操作符,在实际应用中尽可能将 m a t c h 放在管道的前面位置。这样有两个好处:一是可以快速将不需要的文档过滤掉,以减少管道的工作量;二是如果再投射和分组之前执行 match放在管道的前面位置。这样有两个好处:一是可以快速将不需要的文档过滤掉,以减少管道的工作量;二是如果再投射和分组之前执行 match放在管道的前面位置。这样有两个好处:一是可以快速将不需要的文档过滤掉,以减少管道的工作量;二是如果再投射和分组之前执行match,查询可以使用索引。

 db.books.aggregate([{$match:{type:"technology"}}]) 

筛选管道操作和其他管道操作配合时候时,尽量放到开始阶段,这样可以减少后续管道操作符要操作的文档数,提升效率

db.books.aggregate([{$match:{type:"technology"}},{$project:{name:"$title",_id:0,type:1,author:{name:1}}}
])

$count

计数并返回与查询匹配的结果数

db.books.aggregate([{$match:{type:"technology"}},{$count: "type_count"}
])

$match阶段筛选出type匹配technology的文档,并传到下一阶段;
$count阶段返回聚合管道中剩余文档的计数,并将该值分配给type_count

$group

按指定的表达式对文档进行分组,并将每个不同分组的文档输出到下一个阶段。输出文档包含一个_id字段,该字段按键包含不同的组。
输出文档还可以包含计算字段,该字段保存由$group的_id字段分组的一些accumulator表达式的值。 $group不会输出具体的文档而只是统计信息。

 { $group: { _id: <expression>, <field1>: { <accumulator1> : <expression1> }, ... } } 
  • _id字段是必填的;但是,可以指定_id值为null来为整个输入文档计算累计值。
  • 剩余的计算字段是可选的,并使用运算符进行计算。
  • _id和表达式可以接受任何有效的表达式。

accumulator操作符

名称描述类比sql
$avg计算均值avg
$first返回每组第一个文档,如果有排序,按照排序,如果没有按照默认的存储的顺序的第一个文档。limit 0,1
$last返回每组最后一个文档,如果有排序,按照排序,如果没有按照默认的存储的顺序的最后个文档。-
$max根据分组,获取集合中所有文档对应值得最大值。max
$min根据分组,获取集合中所有文档对应值得最小值。min
$push将指定的表达式的值添加到一个数组中。-
$addToSet将表达式的值添加到一个集合中(无重复值,无序)。-
$sum计算总和sum
$stdDevPop返回输入值的总体标准偏差(population standard deviation)-
$stdDevSamp返回输入值的样本标准偏差(the sample standard deviation)-

g r o u p 阶段的内存限制为 100 M 。默认情况下,如果 s t a g e 超过此限制, group阶段的内存限制为100M。默认情况下,如果stage超过此限制, group阶段的内存限制为100M。默认情况下,如果stage超过此限制,group将产生错误。但是,要允许处理大型数据集,请将allowDiskUse选项设置为true以启用$group操作以写入临时文件。
book的数量,收藏总数和平均值

db.books.aggregate([{$group:{_id:null,count:{$sum:1},pop:{$sum:"$favCount"},avg:{$avg:"$favCount"}}}
])

统计每个作者的book收藏总数

db.books.aggregate([{$group:{_id:"$author.name",pop:{$sum:"$favCount"}}}
])

统计每个作者的每本book的收藏数

db.books.aggregate([{$group:{_id:{name:"$author.name",title:"$title"},pop:{$sum:"$favCount"}}}
])

每个作者的book的type合集

db.books.aggregate([{$group:{_id:"$author.name",types:{$addToSet:"$type"}}}
])

$unwind

可以将数组拆分为单独的文档
v3.2+支持如下语法:

{$unwind:{#要指定字段路径,在字段名称前加上$符并用引号括起来。path: <field path>,#可选,一个新字段的名称用于存放元素的数组索引。该名称不能以$开头。includeArrayIndex: <string>,  #可选,default :false,若为true,如果路径为空,缺少或为空数组,则$unwind输出文档preserveNullAndEmptyArrays: <boolean> } }

姓名为xx006的作者的book的tag数组拆分为多个文档

db.books.aggregate([{$match:{"author.name":"xx006"}},{$unwind:"$tag"}
])db.books.aggregate([{$match:{"author.name":"xx006"}}
])

每个作者的book的tag合集

db.books.aggregate([{$unwind:"$tag"},{$group:{_id:"$author.name",types:{$addToSet:"$tag"}}}
])

案例
示例数据

db.books.insert([
{"title" : "book-51","type" : "technology","favCount" : 11,"tag":[],"author" : {"name" : "fox","age" : 28}
},{"title" : "book-52","type" : "technology","favCount" : 15,"author" : {"name" : "fox","age" : 28}
},{"title" : "book-53","type" : "technology","tag" : ["nosql","document"],"favCount" : 20,"author" : {"name" : "fox","age" : 28}
}])

测试

# 使用includeArrayIndex选项来输出数组元素的数组索引
db.books.aggregate([{$match:{"author.name":"fox"}},{$unwind:{path:"$tag", includeArrayIndex: "arrayIndex"}}
])
# 使用preserveNullAndEmptyArrays选项在输出中包含缺少size字段,null或空数组的文档
db.books.aggregate([{$match:{"author.name":"fox"}},{$unwind:{path:"$tag", preserveNullAndEmptyArrays: true}}
])

$limit

限制传递到管道中下一阶段的文档数

db.books.aggregate([{$limit : 5 }
])

此操作仅返回管道传递给它的前5个文档。 l i m i t 对其传递的文档内容没有影响。 < b r / > 注意:当 limit对其传递的文档内容没有影响。<br />注意:当 limit对其传递的文档内容没有影响。<br/>注意:当sort在管道中的 l i m i t 之前立即出现时, limit之前立即出现时, limit之前立即出现时,sort操作只会在过程中维持前n个结果,其中n是指定的限制,而MongoDB只需要将n个项存储在内存中。

$skip

跳过进入stage的指定数量的文档,并将其余文档传递到管道中的下一个阶段

db.books.aggregate([{$skip : 5 }
])

此操作将跳过管道传递给它的前5个文档。 $skip对沿着管道传递的文档的内容没有影响。

$sort

对所有输入文档进行排序,并按排序顺序将它们返回到管道。
语法:

{ $sort: { <field1>: <sort order>, <field2>: <sort order> ... } }

要对字段进行排序,请将排序顺序设置为1或-1,以分别指定升序或降序排序,如下例所示:

db.books.aggregate([{$sort : {favCount:-1,title:1}}
])

$lookup

Mongodb 3.2版本新增,主要用来实现多表关联查询, 相当关系型数据库中多表关联查询。每个输入待处理的文档,经过$lookup 阶段的处理,输出的新文档中会包含一个新生成的数组(可根据需要命名新key )。数组列存放的数据是来自被Join集合的适配文档,如果没有,集合为空(即 为[ ])
语法:

db.collection.aggregate([{$lookup: {from: "<collection to join>",localField: "<field from the input documents>",foreignField: "<field from the documents of the from collection>",as: "<output array field>"}})
from同一个数据库下等待被Join的集合。
localField源集合中的match值,如果输入的集合中,某文档没有 localField
这个Key(Field),在处理的过程中,会默认为此文档含
有 localField:null的键值对。
foreignField待Join的集合的match值,如果待Join的集合中,文档没有foreignField
值,在处理的过程中,会默认为此文档含有 foreignField:null的键值对。
as为输出文档的新增值命名。如果输入的集合中已存在该值,则会覆盖掉

注意:null = null 此为真
其语法功能类似于下面的伪SQL语句:

SELECT *, <output array field>
FROM collection
WHERE <output array field> IN (SELECT *FROM <collection to join>WHERE <foreignField>= <collection.localField>);

案例

数据准备

db.customer.insert({customerCode:1,name:"customer1",phone:"13112345678",address:"test1"})
db.customer.insert({customerCode:2,name:"customer2",phone:"13112345679",address:"test2"})db.order.insert({orderId:1,orderCode:"order001",customerCode:1,price:200})
db.order.insert({orderId:2,orderCode:"order002",customerCode:2,price:400})db.orderItem.insert({itemId:1,productName:"apples",qutity:2,orderId:1})
db.orderItem.insert({itemId:2,productName:"oranges",qutity:2,orderId:1})
db.orderItem.insert({itemId:3,productName:"mangoes",qutity:2,orderId:1})
db.orderItem.insert({itemId:4,productName:"apples",qutity:2,orderId:2})
db.orderItem.insert({itemId:5,productName:"oranges",qutity:2,orderId:2})
db.orderItem.insert({itemId:6,productName:"mangoes",qutity:2,orderId:2})

关联查询

db.customer.aggregate([        {$lookup: {from: "order",localField: "customerCode",foreignField: "customerCode",as: "customerOrder"}} 
])db.order.aggregate([{$lookup: {from: "customer",localField: "customerCode",foreignField: "customerCode",as: "curstomer"}},{$lookup: {from: "orderItem",localField: "orderId",foreignField: "orderId",as: "orderItem"}}
])

聚合操作案例1

统计每个分类的book文档数量

db.books.aggregate([{$group:{_id:"$type",total:{$sum:1}}},{$sort:{total:-1}}
])

标签的热度排行,标签的热度则按其关联book文档的收藏数(favCount)来计算

db.books.aggregate([{$match:{favCount:{$gt:0}}},{$unwind:"$tag"},{$group:{_id:"$tag",total:{$sum:"$favCount"}}},{$sort:{total:-1}}
])
  1. $match阶段:用于过滤favCount=0的文档。
  2. $unwind阶段:用于将标签数组进行展开,这样一个包含3个标签的文档会被拆解为3个条目。
  3. g r o u p 阶段:对拆解后的文档进行分组计算, group阶段:对拆解后的文档进行分组计算, group阶段:对拆解后的文档进行分组计算,sum:"$favCount"表示按favCount字段进行累加。
  4. $sort阶段:接收分组计算的输出,按total得分进行排序。

统计book文档收藏数[0,10),[10,60),[60,80),[80,100),[100,+∞)

db.books.aggregate([{$bucket:{groupBy:"$favCount",boundaries:[0,10,60,80,100],default:"other",output:{"count":{$sum:1}}}
}])

聚合操作案例2

导入邮政编码数据集:https://media.mongodb.org/zips.json
使用mongoimport工具导入数据

mongoimport -h 192.168.65.174 -d test -u fox -p fox --authenticationDatabase=admin -c zips --file D:\ProgramData\mongodb\import\zips.json 

h,–host :代表远程连接的数据库地址,默认连接本地Mongo数据库;
–port:代表远程连接的数据库的端口,默认连接的远程端口27017;
-u,–username:代表连接远程数据库的账号,如果设置数据库的认证,需要指定用户账号;
-p,–password:代表连接数据库的账号对应的密码;
-d,–db:代表连接的数据库;
-c,–collection:代表连接数据库中的集合;
-f, --fields:代表导入集合中的字段;
–type:代表导入的文件类型,包括csv和json,tsv文件,默认json格式;
–file:导入的文件名称
–headerline:导入csv文件时,指明第一行是列名,不需要导入;

image.png
返回人口超过1000万的州

db.zips.aggregate( [{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },{ $match: { totalPop: { $gte: 10*1000*1000 } } }
] )

这个聚合操作的等价SQL是:
SELECT state, SUM(pop) AS totalPop FROM zips GROUP BY state HAVING totalPop >= (1010001000)
返回各州平均城市人口

SELECT state, SUM(pop) AS totalPop
FROM zips
GROUP BY state
HAVING totalPop >= (10*1000*1000)

按州返回最大和最小的城市

db.zips.aggregate( [{ $group:{_id: { state: "$state", city: "$city" },pop: { $sum: "$pop" }}},{ $sort: { pop: 1 } },{ $group:{_id : "$_id.state",biggestCity:  { $last: "$_id.city" },biggestPop:   { $last: "$pop" },smallestCity: { $first: "$_id.city" },smallestPop:  { $first: "$pop" }}},{ $project:{ _id: 0,state: "$_id",biggestCity:  { name: "$biggestCity",  pop: "$biggestPop" },smallestCity: { name: "$smallestCity", pop: "$smallestPop" }}}
] )

MapReduce

MapReduce操作将大量的数据处理工作拆分成多个线程并行处理,然后将结果合并在一起。MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。
MapReduce具有两个阶段:

  1. 将具有相同Key的文档数据整合在一起的map阶段
  2. 组合map操作的结果进行统计输出的reduce阶段

MapReduce的基本语法

db.collection.mapReduce(function() {emit(key,value);},  //map 函数function(key,values) {return reduceFunction},   //reduce 函数{out: <collection>,query: <document>,sort: <document>,limit: <number>,finalize: <function>, scope: <document>,jsMode: <boolean>,verbose: <boolean>,bypassDocumentValidation: <boolean>}
)
  • map,将数据拆分成键值对,交给reduce函数
  • reduce,根据键将值做统计运算
  • out,可选,将结果汇入指定表
  • quey,可选筛选数据的条件,筛选的数据送入map
  • sort,排序完后,送入map
  • limit,限制送入map的文档数
  • finalize,可选,修改reduce的结果后进行输出
  • scope,可选,指定map、reduce、finalize的全局变量
  • jsMode,可选,默认false。在mapreduce过程中是否将数 据转换成bson格式。
  • verbose,可选,是否在结果中显示时间,默认false
  • bypassDocmentValidation,可选,是否略过数据校验

image.png
统计type为travel的不同作者的book文档收藏数

db.books.mapReduce(function(){emit(this.type,this.favCount)},function(key,values){return Array.sum(values)},{query:{type:"travel"},out: "books_favCount"})

image.png
从MongoDB 5.0开始,map-reduce操作已被弃用。聚合管道比映射-reduce操作提供更好的性能和可用性。Map-reduce操作可以使用聚合管道操作符重写,例如 g r o u p 、 group、 groupmerge等。dn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/662941.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】AAAI 会议论文聚类分析

实验五&#xff1a;AAAI 会议论文聚类分析 ​ 本次实验以AAAI 2014会议论文数据为基础&#xff0c;要求实现或调用无监督聚类算法&#xff0c;了解聚类方法。 1 任务介绍 ​ 每年国际上召开的大大小小学术会议不计其数&#xff0c;发表了非常多的论文。在计算机领域的一些大…

K8s 集群可观测性-数据分流最佳实践

简介 在微服务架构下&#xff0c;一个 k8s 集群中经常会部署多套业务&#xff0c;同时也意味着不同团队、不同角色、不同的业务会在同一集群中&#xff0c;需要将不同业务的数据在不同的空间进行管理和查看。 在传统的主机环境下&#xff0c;这个是可以通过不同的主机部署 Da…

《元梦之星》赛季更新带来“新”内容,为何却被玩家集体声讨?

前段时间&#xff0c;《元梦之星》迎来了“山海奇遇”赛季的重磅更新&#xff0c;诸多“新”内容的上线吸引了很多玩家们的关注&#xff0c;然而在新版本开启之后没有多&#xff0c;新玩法新时装甚至是游戏中的新改动都引起了不少玩家的不满。 在新赛季开启之后&#xff0c;玩家…

Python爬虫http基本原理

HTTP 基本原理 在本节中&#xff0c;我们会详细了解 HTTP 的基本原理&#xff0c;了解在浏览器中敲入 URL 到获取网页内容之间发生了什么。了解了这些内容&#xff0c;有助于我们进一步了解爬虫的基本原理。 2.1.1 URI 和 URL 这里我们先了解一下 URI 和 URL&#xff0c;URI…

抖音弹幕直播玩法汉字找不同文字找不同无人值执守自动玩游戏自带语音播报的开发日志

#找不同# 要解决如下几个问题&#xff1a; 1.声音sprite的录制和调用&#xff0c;解决方案以及解决库如下&#xff1a; howler.min.js://一款不错的音频播放js库。 2.鼠标自动飘浮,使用的库 anime.min.js 3.资源预加载 preload.min.js 4.其它使用到的库 jquery,vue

stack和queue及优先级队列和适配器(包括deque)的介绍

stack stack的介绍 stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行元素的插入与提取操作。stack是作为容器适配器被实现的&#xff0c;容器适配器即是对特定类封装作为其底层的容器&#xff0c;并提供一组…

Android使用ScrollView导致鼠标点击事件无效

平台 测试平台: RK3288 Android8.1RK3588 Android 12 问题 首先, 这个问题的前提是, 使用的输入设备是**鼠标**, 普通的触摸屏并不会出现这个问题. 大致的流程是APP的UI布局中采用ScrollView作为根容器, 之后添加各类子控件, 在一起准备就绪后, 使用鼠标进行功能测试, 出现…

国产隔离芯片的质量控制与发展趋势

随着电子技术的飞速发展&#xff0c;国产隔离芯片在电力电子、通信设备等领域中扮演着重要角色。然而&#xff0c;随之而来的是对于其质量控制的迫切需求。本文将从结构、制造工艺、测试手段等方面对国产隔离芯片的质量控制进行分析&#xff0c;并展望其未来的发展趋势。 一、国…

element-ui link 组件源码分享

link 组件的 api 涉及的内容不是很多&#xff0c;源码部分的内容也相对较简单&#xff0c;下面从以下这三个方面来讲解&#xff1a; 一、组件结构 1.1 组件结构如下图&#xff1a; 二、组件属性 2.1 组件主要有 type、underline、disabled、href、icon 这些属性&#xff0c;…

KVM-安装-使用-迁移

一. KVM安装 1. 基础安装 # 下载源 curl -o /etc/yum.repos.d/Centos-7.repo http://mirrors.aliyun.com/repo/Centos-7.repo# 安装基础软件 yum -y install tree vim wget bash-completion bash-completion-extras lrzsz net-tools sysstat iotop iftop htop unzip nc nmap …

批量修改文件后缀名

需要将/opt/module/test/路径下的txt文件后缀修改为cpp&#xff0c;并且以年份结尾 代码如下&#xff1a; #!/bin/bashyear2020 directory"/opt/module/test/"cd "$directory" || exit 1for name in *.txt; donew_name"${name%.txt}_${year}.cpp&qu…

SpringBoot security 安全认证(一)——登录验证

本节内容&#xff1a;使用springboot自动security模块实现用户登录验证功能&#xff1b; 登录过程如下图&#xff1a; AuthenticationManager内容实现用户账号密码验证&#xff0c;还可以对用户状态&#xff08;启用/禁用&#xff09;&#xff0c;逻辑删除&#xff0c;账号是否…

LeetCode.189. 轮转数组

题目 题目链接 分析 首先能想到的就是可以用一个新数组&#xff0c;先保存原数组的后 k 个元素&#xff0c;再保存原数组的前 n−k 个元素。但题目要求不使用额外的数组空间&#xff0c;那么就需要在原数组上做操作。 我们可以先把整个数组翻转一下&#xff0c;这样后半段元…

虚幻UE5Matehuman定制自己的虚拟人,从相机拍照到UE5制作全流程

开启自己的元宇宙,照片扫描真实的人类,生成虚拟形象,保姆级教程,欢迎大家指正。 需要的软件: 制作流程: 一.拍照。 围绕自己拍照,大概20多张图就差不多了,把脑门漏出来,无需拍后脑勺。 拍照方式 例如,拍照时尽量不要在脸上体现出明显的光源方向。

07. 【Linux教程】远程登录

Linux 远程登录 前面介绍了如何安装 Linux 终端工具&#xff0c;本小节介绍本地电脑如何使用 ssh 命令远程登录、Linux 终端工具远程登录的方式&#xff0c;这两种登录方式都是基于 ssh 网络安全协议的&#xff0c;学会使用远程登录 Linux 服务器&#xff0c;会让你对 Linux 系…

Postman(接口测试工具),什么是Postman接口

目录 一.基本介绍 Postman 是什么Postman 快速入门快速入门需求说明 二.Postman 完成 Controller 层测试 需要的代码&#xff1a; Java类request.jspsuccess.jsp1. 完成请求2. 完成请求3. 完成请求4. 完成请求5. 完成请求 三.发送join 目录 一.基本介绍 Postman 是什么 …

使用 Dockerfile 定制镜像详解

使用 Dockerfile 定制镜像详解 1.DockerfileFROM 指定基础镜像RUN 执行命令构建镜像 2.COPY 复制文件3.ADD 更高级的复制文件4.CMD 容器启动命令5.ENTRYPOINT 入口点6.ENV 设置环境变量7.ARG 构建参数8.VOLUME 定义匿名卷9.EXPOSE 暴露端口10.WORKDIR 指定工作目录11.USER 指定…

通过Netbackup恢复Oracle备份实操手册

1、系统环境描述 1 2、恢复前数据备份 2 2.1 在NBU上执行一次完整的备份 2 2.2 查看ORACLE的备份集 3 2.2.1在备份客户端上查看备份集 3 2.2.2在备份服务器netbackup上查看客户端备份集 4 3、本机恢复方法 5 3.1丢失SPFILE文件恢复方法 5 3.2丢失CONTROLFILE文件恢复方…

51单片机编程应用(C语言):模块化编程

下面我们模块化几个函数&#xff1a; Delay.c //延时子函数 void Delay(unsigned int xms) {unsigned char i, j;while(xms--){i 2;j 239;do{while (--j);} while (--i);} } Delay.h #ifndef __DELAY_H__ #define __DELAY_H__void Delay(unsigned int xms);#endifNixie.h …

js 设置、获取、删除标签属性以及H5自定义属性

1. 设置标签属性 使用setAttribute()(‘属性名’, ‘属性值’)方法可以添加、修改、删除属性。   下面的demo是为input添加、修改、删除value属性&#xff1a; 1.1. HTML <input type"text" class"input"> <input type"text" class…