韦达定理用处多

文章目录

  • 前言
  • 一、一元二次方程中根和系数之间的关系
  • 二、韦达定理的数学推导和作用
    • 1. 韦达定理的数学推导
    • 2. 韦达定理的作用
  • 三、韦达定理的应用举例
    • 1. 解题示例1
    • 2. 解题示例2
    • 3. 解题示例3
    • 4. 解题示例4
    • 5. 解题示例5
    • 6. 解题示例6
    • 7. 解题示例7
  • 总结


前言

韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达(F. Vieta,1540—1603)最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。有趣的是,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论证。 韦达定理在方程论中有着广泛的应用。


一、一元二次方程中根和系数之间的关系

韦达定理指出了一元n次方程中根和系数之间的关系。
这里只谈一元二次方程中根和系数之间的关系。

对于一元二次方程
a x 2 + b x + c = 0 ( a ≠ 0 且△ = b 2 − 4 a c > 0 ) ax^2+bx+c=0 \space (a≠0 且△=b^2-4ac>0) ax2+bx+c=0 (a=0=b24ac>0)的两个根为 x 1 , x 2 x_1,x_2 x1x2

x 1 + x 2 = − b a x_1+x_2= - \frac b a x1+x2=ab
x 1 ⋅ x 2 = c a x_1·x_2= \frac c a x1x2=ac
1 x 1 + 1 x 2 = x 1 + x 2 x 1 ⋅ x 2 \frac {1} {x_1} + \frac{1} {x_2} = \frac {x_1+x_2}{x_1·x_2} x11+x21=x1x2x1+x2

二、韦达定理的数学推导和作用

1. 韦达定理的数学推导

由一元二次方程求根公式知:
x 1 , 2 = − b ± b 2 − 4 a c 2 a x_{1,2} = \frac {-b \pm \sqrt {b^2 - 4ac}} {2a} x1,2=2ab±b24ac
则有:
x 1 + x 2 = − b + b 2 − 4 a c 2 a + − b − b 2 − 4 a c 2 a = − b a x_1 + x_2 = \frac {-b + \sqrt {b^2 - 4ac}} {2a} + \frac {-b - \sqrt {b^2 - 4ac}} {2a} = - \frac {b} {a} x1+x2=2ab+b24ac +2abb24ac =ab
x 1 ⋅ x 2 = − b + b 2 − 4 a c 2 a × − b − b 2 − 4 a c 2 a = c a x_1 \cdot x_2 = \frac {-b + \sqrt {b^2 - 4ac}} {2a} \times \frac {-b - \sqrt {b^2 - 4ac}} {2a} = \frac {c} {a} x1x2=2ab+b24ac ×2abb24ac =ac

2. 韦达定理的作用

不论是解方程,还是研究方程的性质,韦达定理都很有用。
一般来说,韦达定理主要有以下四个方面的用途。
(1)利用韦达定理可以观察出一些一元二次方程的根;
(2)已知方程的两根之间的某种关系,可以求出方程的系数来;
(3)已知二次方程,求它的两个根的齐次幂的和;
(4)已知二次方程,求作一个新的二次方程,使得两个方程的根满足某种关系。

三、韦达定理的应用举例

1. 解题示例1

对于方程
x 2 − ( m − 1 ) x + m − 7 = 0 x^2 - (m-1)x + m-7 = 0 x2(m1)x+m7=0
已知下列条件之一,求m的值。
(1)有一个根为0;
(2)两根互为倒数;
(3)两根互为相反数。

解:
(1)已知“有一个根为0”,不妨设 x 1 = 0 x_1=0 x1=0。由韦达定理可知
x 1 ⋅ x 2 = m − 7 x_1 \cdot x_2 = m-7 x1x2=m7
∵ x 1 = 0 \because x_1=0 x1=0
∴ m − 7 = 0 , m = 7 \therefore m-7=0, m=7 m7=0,m=7

(2)已知“两根互为倒数”,必有 x 1 = 1 x 2 x_1= \frac {1} {x_2} x1=x21。由韦达定理可知
x 1 ⋅ x 2 = m − 7 x_1 \cdot x_2 = m-7 x1x2=m7
∵ x 1 ⋅ x 2 = x 1 ⋅ 1 x 1 = 1 \because x_1 \cdot x_2 = x_1 \cdot \frac {1} {x_1} = 1 x1x2=x1x11=1
∴ m − 7 = 1 , m = 8 \therefore m-7=1, \space m=8 m7=1, m=8

(3)已知“两根互为相反数”,必有 x 1 = − x 2 x_1= -x_2 x1=x2。由韦达定理可知
x 1 + x 2 = m − 1 x_1 + x_2 = m-1 x1+x2=m1
∵ x 1 + x 2 = 0 \because x_1 + x_2 = 0 x1+x2=0
∴ m − 1 = 0 , m = 1 \therefore m-1=0, \space m=1 m1=0, m=1

2. 解题示例2

已知方程 x 2 + 2 x − 18 = 0 x^2 + 2x -18 = 0 x2+2x18=0的两根为 α , β \alpha, \beta α,β
(1)写出以 2 α + 3 β 2\alpha+3\beta 2α+3β 2 β + 3 α 2\beta+3\alpha 2β+3α为两根的方程;
(2)写出以 α + 2 β \alpha+\frac{2}{\beta} α+β2 β + 2 α \beta+\frac{2}{\alpha} β+α2为两根的方程。

解:
(1)由韦达定理得
α + β = − 2 ,  α ⋅ β = − 18 \alpha+\beta = -2,\space \alpha \cdot \beta = -18 α+β=2 αβ=18
∵ ( 2 α + 3 β ) + ( 2 β + 3 α ) = 5 ( α + β ) = 5 × ( − 2 ) = − 10 \because (2\alpha+3\beta) + (2\beta+3\alpha) = 5(\alpha+\beta) = 5 \times (-2) = -10 (2α+3β)+(2β+3α)=5(α+β)=5×(2)=10
∵ ( 2 α + 3 β ) ⋅ ( 2 β + 3 α ) \because (2\alpha+3\beta) \cdot (2\beta+3\alpha) (2α+3β)(2β+3α)
= 6 α 2 + 13 α β + 6 β 2 =6\alpha^2+13\alpha\beta+6\beta^2 =6α2+13αβ+6β2
= 6 ( α 2 + β 2 ) + 13 × ( − 18 ) =6(\alpha^2+\beta^2)+13\times(-18) =6(α2+β2)+13×(18)
= 6 ( α 2 + β 2 ) − 234 =6(\alpha^2+\beta^2)-234 =6(α2+β2)234
α 2 + β 2 = ( α + β ) 2 − 2 α β \alpha^2+\beta^2 = (\alpha+\beta)^2 - 2\alpha\beta α2+β2=(α+β)22αβ
= ( − 2 ) 2 − 2 × ( − 18 ) = 40 =(-2)^2 - 2\times(-18) = 40 =(2)22×(18)=40
∴ ( 2 α + 3 β ) ⋅ ( 2 β + 3 α ) \therefore (2\alpha+3\beta) \cdot (2\beta+3\alpha) (2α+3β)(2β+3α)
= 6 × 40 − 234 = 6 =6\times40-234 = 6 =6×40234=6
∴ 所求方程为 x 2 + 10 x + 6 = 0 \therefore 所求方程为x^2 + 10x + 6 = 0 所求方程为x2+10x+6=0

(1)由韦达定理得
( α + 2 β ) + ( β + 2 α ) (\alpha+\frac{2}{\beta}) + (\beta+\frac{2}{\alpha}) (α+β2)+(β+α2)
= α + β + 2 α + β α β = \alpha + \beta + 2 \frac {\alpha+\beta} {\alpha\beta} =α+β+2αβα+β
= − 2 + 2 × − 2 − 18 = − 16 9 = -2 + 2 \times \frac{-2}{-18} = - \frac {16} {9} =2+2×182=916

( α + 2 β ) ⋅ ( β + 2 α ) (\alpha+\frac{2}{\beta}) \cdot (\beta+\frac{2}{\alpha}) (α+β2)(β+α2)
= α β + 4 α β + 4 = − 18 + 4 − 18 + 4 = − 128 9 = \alpha \beta + \frac {4} { \alpha \beta} +4 = -18 + \frac {4} {-18} + 4 = - \frac {128} {9} =αβ+αβ4+4=18+184+4=9128
∴ 所求方程为 9 x 2 + 16 x − 128 = 0 \therefore 所求方程为9x^2 + 16x - 128 = 0 所求方程为9x2+16x128=0

3. 解题示例3

已知方程 x 2 − x − 4 = 0 x^2 - x - 4 = 0 x2x4=0,不许解方程,求 x 1 2 + x 2 2 x_1^2 + x_2^2 x12+x22 1 x 1 3 + 1 x 2 3 \frac {1} {x_1^3} + \frac {1} {x_2^3} x131+x231的值。 (1956年北京市中学生数学竞赛试题)
解:
由韦达定理可知
x 1 + x 2 = 1 , x 1 ⋅ x 2 = − 4 x_1 + x_2 = 1,x_1 · x_2 = -4 x1+x2=1x1x2=4
x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 − 2 x 1 x 2 = 1 2 − 2 × ( − 4 ) = 9 x_1^2 + x_2^2 = ( x_1 + x_2)^2 - 2 x_1 x_2 = 1^2 - 2 \times (-4) = 9 x12+x22=(x1+x2)22x1x2=122×(4)=9

1 x 1 3 + 1 x 2 3 \frac {1} {x_1^3} + \frac {1} {x_2^3} x131+x231
= x 1 3 + x 2 3 x 1 3 ⋅ x 2 3 = ( x 1 + x 2 ) ( x 1 2 − x 1 x 2 + x 2 2 ) ( x 1 ⋅ x 2 ) 3 = \frac {x_1^3 + x_2^3} {x_1^3 \cdot x_2^3} = \frac {(x_1+x_2)( x_1^2 -x_1 x_2+ x_2^2)} {(x_1 \cdot x_2)^3} =x13x23x13+x23=(x1x2)3(x1+x2)(x12x1x2+x22)
= ( x 1 + x 2 ) [ ( x 1 2 + x 2 2 ) − x 1 x 2 ] ( x 1 ⋅ x 2 ) 3 = \frac {(x_1+x_2)[( x_1^2 + x_2^2) - x_1 x_2]} {(x_1 \cdot x_2)^3} =(x1x2)3(x1+x2)[(x12+x22)x1x2]
1 × [ 9 − ( − 4 ) ] ( − 4 ) 3 = − 13 64 \frac {1 \times [9-(-4)]} {(-4)^3} = - \frac {13} {64} (4)31×[9(4)]=6413

4. 解题示例4

已知 p + q = 198 p+q=198 p+q=198,求方程 x 2 + p x + q = 0 x^2+px+q=0 x2+px+q=0的整数根. (94祖冲之杯数学邀请赛试题)

解:设方程的两整数根为 x 1 , x 2 x_1, x_2 x1,x2,不妨设 x 1 ≤ x 2 x_1≤x_2 x1x2. 由韦达定理,得

x 1 + x 2 = − p , x 1 ⋅ x 2 = q x_1+x_2=-p,x_1 \cdot x_2=q x1+x2=px1x2=q

于是 p + q = x 1 ⋅ x 2 − ( x 1 + x 2 ) = 198 p+q=x_1·x_2-(x_1+x_2)=198 p+q=x1x2(x1+x2)=198

x 1 ⋅ x 2 − x 1 − x 2 + 1 = 199 x_1·x_2-x_1-x_2+1=199 x1x2x1x2+1=199

∴运用提取公因式法 ( x 1 − 1 ) ⋅ ( x 2 − 1 ) = 199 (x_1-1)·(x_2-1)=199 (x11)(x21)=199

注意到 ( x 1 − 1 ) , ( x 2 − 1 ) (x_1-1), (x_2-1) (x11),(x21)均为整数,

解得 x 1 = 2 , x 2 = 200 ; x 1 = − 198 , x 2 = 0 x_1=2,x_2=200;x_1=-198,x_2=0 x1=2x2=200x1=198x2=0

5. 解题示例5

已知关于 x x x的方程 x 2 − ( 12 − m ) x + m − 1 = 0 x^2-(12-m)x+m-1=0 x2(12m)x+m1=0的两个根都是正整数,求 m m m的值.

解:设方程的两个正整数根为 x 1 , x 2 x_1,x_2 x1,x2,且不妨设 x 1 ≤ x 2 x_1≤x_2 x1x2.由韦达定理得

x 1 + x 2 = 12 − m , x 1 ⋅ x 2 = m − 1 x_1+x_2=12-m,x_1 \cdot x_2=m-1 x1+x2=12mx1x2=m1

于是 x 1 ⋅ x 2 + x 1 + x 2 = 11 x_1 \cdot x_2 + x_1+x_2 = 11 x1x2+x1+x2=11

( x 1 + 1 ) ( x 2 + 1 ) = 12 (x_1+1)( x_2+1)=12 (x1+1)(x2+1)=12

x 1 , x 2 x_1, x_2 x1,x2为正整数,

解得 x 1 = 1 , x 2 = 5 ; x 1 = 2 , x 2 = 3 x_1=1,x_2=5;x_1=2,x_2=3 x1=1x2=5x1=2x2=3

故有 m = 6 ,或 m = 7. m=6,或m=7. m=6,或m=7.

6. 解题示例6

求实数 k k k,使得方程 k x 2 + ( k + 1 ) x + ( k − 1 ) = 0 kx^2+(k+1)x+(k-1)=0 kx2+(k+1)x+(k1)=0的根都是整数.

解:若 k = 0 k=0 k=0,得 x = 1 x=1 x=1,即 k = 0 k=0 k=0符合要求.
k ≠ 0 k≠0 k=0,设二次方程的两个整数根为 x 1 , x 2 x_1,x_2 x1,x2,且 x 1 ≤ x 2 x_1≤x_2 x1x2,由韦达定理得
x 1 + x 2 = − k + 1 k , x 1 ⋅ x 2 = k − 1 k x_1+x_2 = - \frac {k+1} {k},x_1 \cdot x_2 = \frac {k-1} {k} x1+x2=kk+1x1x2=kk1
∴ x 1 ⋅ x 2 − x 1 − x 2 = k − 1 k − ( − k + 1 k ) = 2 ∴ x_1 \cdot x_2 - x_1 - x_2 = \frac {k-1} {k} - (- \frac {k+1} {k}) = 2 x1x2x1x2=kk1(kk+1)=2

∴ ( x 1 − 1 ) ( x 2 − 1 ) = 3 ∴ (x_1-1)( x_2-1)=3 (x11)(x21)=3

因为 x 1 − 1 , x 2 − 1 x_1 - 1, x_2 - 1 x11,x21均为整数,所以有

x 1 = 2 , x 2 = 4 ; x 1 = − 2 , x 2 = 0 x_1=2,x_2=4;x_1=-2,x_2=0 x1=2x2=4x1=2x2=0

所以 k = 1 ,或 k = − 1 7 k=1,或k=- \frac 1 7 k=1,或k=71

7. 解题示例7

已知二次函数 y = − x 2 + p x + q y=-x^2+px+q y=x2+px+q的图像与 x x x轴交于 ( α , 0 ) 、 ( β , 0 ) (α,0)、(β,0) (α0)(β0)两点,且 α > 1 > β α>1>β α>1>β,求证: p + q > 1 p+q>1 p+q>1. (1997年四川省初中数学竞赛试题)

证明:由题意,可知方程 − x 2 + p x + q = 0 -x^2+px+q=0 x2+px+q=0,即 x 2 − p x − q = 0 x^2-px-q=0 x2pxq=0的两根为 α , β α,β α,β.

由韦达定理得 α + β = p , α β = − q α+β=p,αβ=-q α+β=pαβ=q

于是 p + q = α + β − α β = − ( α β − α − β + 1 ) + 1 p+q=α+β-αβ=-(αβ-α-β+1)+1 p+q=α+βαβ=(αβαβ+1)+1

因为 α > 1 > β α>1>β α>1>β,故

p + q = − ( α − 1 ) ( β − 1 ) + 1 > 1 p+q = -(α-1)(β-1)+1 > 1 p+q=(α1)(β1)+1>1


总结

法国数学家韦达(F. Vieta,1540—1603)第一次有意识地使用系统的代数字母与符号,以辅音字母表示已知量,元音字母表示未知量,推进了方程论的发展,使代数成为一般类型的形式和方程的学问,因其抽象而应用更为广泛,被称为“代数符号之父”,在研究一元二次方程的解法时,他发现了一元二次方程的根与系数之间存在的特殊关系。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/662465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年沼渣外运及处置服务采购项目招标公告

2024年沼渣外运及处置服务采购项目招标公告 (招标编号:FG2400770097A) 项目所在地区:重庆市 一、招标条件 本2024年沼渣外运及处置服务采购项目已由项目审批/核准/备案机关批准,项目资金来源为国有资金1664万元,招标人为重庆渝环生…

2024美赛数学建模C题思路分析 - 网球的动量

1 赛题 问题C:网球的动量 在2023年温布尔登绅士队的决赛中,20岁的西班牙新星卡洛斯阿尔卡拉兹击败了36岁的诺瓦克德约科维奇。这是德约科维奇自2013年以来首次在温布尔登公开赛失利,并结束了他在大满贯赛事中历史上最伟大的球员之一的非凡表…

座舱内四分音区识别技术的浅谈

座舱内四分音区识别技术的创新主要体现在以下几个方面: 声源定位更精确:四分音区技术可以将座舱进一步细分为四个区域,包括驾驶员、副驾、后排左侧和后排右侧。这种更精确的声源定位技术可以帮助更好地识别不同位置的说话者,提高…

开源软件:推动软件行业变革的引擎

开源软件:推动软件行业变革的引擎 随着信息技术的迅速发展,开源软件已经成为软件开发的一股强大力量。其低成本、可协作性和透明度等特点,正在推动着软件行业的变革和繁荣。本文将探讨开源软件在推动软件行业发展中的重要作用,以…

2024美赛C题完整解题教程 网球运动势头(持续更新)

2024美赛已经于今天早上6点准时公布题目。本次美赛将全程跟大家一起战斗冲刺O奖!思路持续更新。 2024 MCM Problem C: Momentum in Tennis (网球运动的势头) 注:在网球运动中,"势头"通常指的是比赛中因一系…

为客户解决痛点,电子纸增加制表功能

为客户解决痛点,电子纸增加制表功能 部分客户购买我们的电子纸后反馈效果很好,但是在配套组态软件制作电子纸模板时,遇到需要制作表格的时候比较麻烦。像是在画板作画一样,比较费时,而且效果不是很好,没办…

Elasticsearch向量数据存储与搜索

1. 向量数据存储 Elasticsearch 支持向量数据类型,可以通过 dense_vector 字段类型来存储固定长度的浮点数数组,这些数组通常代表向量。这种类型的字段可以用于机器学习模型的特征向量存储。 创建带有向量字段的索引 PUT /my_index {"mappings&qu…

机器学习算法决策树

决策树的介绍 决策树是一种常见的分类模型,在金融风控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在婚恋市场中,女方通常会先询问男方是否有房产&a…

2024.2.1日总结

web的运行原理: 用户通过浏览器发送HTTP请求到服务器(网页操作)。web服务器接收到用户特定的HTTP请求,由web服务器请求信息移交给在web服务器中部署的javaweb应用程序(Java程序)。启动javaweb应用程序执行…

k8s之基础组件说明

前言 K8S,全称 Kubernetes,是一个用于管理容器的开源平台。它可以让用户更加方便地部署、扩展和管理容器化应用程序,并通过自动化的方式实现负载均衡、服务发现和自动弹性伸缩等功能。 具体来说,Kubernetes 可以将应用程序打包成…

2024年美赛C题:Momentum in Tennis思路解析

Problem C: Momentum in Tennis 网球运动中的动力 【扫描下方二维码加入群聊,了解更多思路~】 中文题目: 在2023年温布尔登男子单打决赛中,20岁的西班牙新星卡洛斯阿尔卡拉斯击败了36岁的诺瓦克德约科维奇。这是德约科维奇自2013年以来在温布…

RFID技术的应用在汽车座椅加工中的优势

RFID技术的应用在汽车座椅加工中的优势 在传统的汽车座椅加工过程中,需要人工核对和记录座椅的信息,如型号、序列号、生产日期等。这种方式不仅效率低下,而且容易出错。而通过使用RFID技术,这些问题得到了有效解决。 在座椅的生…

使用VScode编译betaflight固件--基于ubuntu平台

使用VScode编译betaflight固件--基于ubuntu平台 1、使用git克隆betaflight的开源代码2、配置编译环境3、使用VScode编译代码 window平台的见上一篇文章 使用VScode编译betaflight固件–基于windows平台 本文主要介绍在linux系统 ubuntu平台下使用VScode编译betaflight固件的方法…

C++集群聊天服务器 网络模块+业务模块+CMake构建项目 笔记 (上)

跟着施磊老师做C项目&#xff0c;施磊老师_腾讯课堂 (qq.com) 一、网络模块ChatServer chatserver.hpp #ifndef CHATSERVER_H #define CHATSERVER_H#include <muduo/net/TcpServer.h> #include <muduo/net/EventLoop.h> using namespace muduo; using namespace …

jsp 产品维修管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 产品维修管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.…

如何使用内网穿透工具在公网实现实时监测DashDot服务器仪表盘

文章目录 1. 本地环境检查1.1 安装docker1.2 下载Dashdot镜像 2. 部署DashDot应用3. 本地访问DashDot服务4. 安装cpolar内网穿透5. 固定DashDot公网地址 本篇文章我们将使用Docker在本地部署DashDot服务器仪表盘&#xff0c;并且结合cpolar内网穿透工具可以实现公网实时监测服务…

2024 TikTok Shop本土店入驻流程全解,建议收藏

如果要在2023选出最具潜力的跨境电商平台&#xff0c;TikTok Shop无疑是一个佼佼者。从上线全托管模式初出锋芒&#xff0c;再到遭遇印尼、东南亚政策打击&#xff0c;最后在黑五电商大促中取得辉煌成绩。2024TikTok势必是红海一片&#xff0c;现在上车还来得及&#xff01;下面…

算法学习-匈牙利算法

例题&#xff1a; 题目&#xff1a;活动 - AcWing 二分图的最大匹配 给定一个二分图&#xff0c;其中左半部包含 n1 个点&#xff08;编号 1∼n1&#xff09;&#xff0c;右半部包含 n2 个点&#xff08;编号 1∼n2&#xff09;&#xff0c;二分图共包含 m条边。 数据保证任意…

python实现的LDA算法

实现LDA算法需要用到一些数学和概率统计的知识&#xff0c;你需要根据LDA算法的具体公式&#xff0c;实现初始化模型参数、Gibbs采样、模型参数更新等具体的步骤。同时&#xff0c;还需要读取训练文件和词典文件&#xff0c;以及保存模型到文件的功能。 理解LDA算法的实现思路…

SpringBoot security 安全认证(三)——自定义注解实现接口放行配置

背景&#xff1a;通过Security实现了安全管理&#xff0c;可以配置哪些接口可以无token直接访问。但一个麻烦就是每增加一个匿名访问接口时都要去修改SecurityConfig配置&#xff0c;从程序设计上讲是不太让人接受的。 本节内容&#xff1a;即是解决以上问题&#xff0c;增加一…