深入解剖指针篇(2)

目录

指针的使用

strlen的模拟实现

传值调用和传址调用

数组名的理解

使用指针访问数组 

一维数组传参的本质

冒泡排序


个人主页(找往期文章):我要学编程(ಥ_ಥ)-CSDN博客

 

指针的使用

strlen的模拟实现

库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。

函数原型:

知道了上面这些,我们就直接开是写代码 。

#include <stdio.h>
int my_strlen(const char* p)
{int count = 0;while (*p != '\0'){count++;p++;}return count;
}
int main()
{char arr[] = "abcdef";int len = my_strlen(arr);printf("%d\n", len);return 0;
}

如果要真正相同的话,这个函数的返回类型也应该改一改。

#include <stdio.h>
size_t my_strlen(const char* p)
{size_t count = 0;while (*p != '\0'){count++;p++;}return count;
}
int main()
{char arr[] = "abcdef";size_t len = my_strlen(arr);printf("%zd\n", len);return 0;
}

因为函数返回类型改了,那么那个返回的值(count)的类型也应该变,接收的,打印的都要变。 

传值调用和传址调用

 学习指针的目的是使用指针解决问题,那什么问题,非指针不可呢?

例如:写一个函数,交换两个整型变量的值

#include <stdio.h>
void swap(int a, int b)
{int tmp = 0;tmp = a;a = b;b = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d%d", &a, &b);printf("交换前:a=%d,b=%d\n", a, b);swap(a, b);printf("交换后:a=%d,b=%d\n", a, b);return 0;
}

我们去运行这个代码会发现,交换前后a与b的值根本就没有发生变化。

这到底是什么原因导致的呢?我们可以尝试调试一下(因为这里我形参和实参都是设置a和b,不好观察,我就把形参改成x和y了): 

通过上面两幅图,我们可以看到x与y的值,虽然交换了,但是却没有影响到a与b。我们在通过指针来深入观察:

我们可以看到a,b与x,y的地址不是一样的,相当于x和y是独立的空间,那么在swap函数内部交换x和y的值, 自然不会影响a和b,当swap函数调用结束后回到main函数,a和b的没法交换。swap函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用。

结论:实参传递给形参的时候,形参会单独创建一份临时空间来接收实参,对形参的修改不影响实 参。 所以swap函数是无效的。

通过前面指针的学习,我们知道可以通过指针来寻找到它所指向的对象,并且可以修改这个对象的值。在main函数中将a和b的地址传递给swap函数,swap 函数里边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。

#include <stdio.h>
void swap(int* x, int* y)
{int tmp = 0;tmp = *x;*x = *y;*y = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d%d", &a, &b);printf("交换前:a=%d,b=%d\n", a, b);swap(&a, &b);printf("交换后:a=%d,b=%d\n", a, b);return 0;
}

上面代码是将a与b的地址传给了函数swap,这种叫做传址调用。

传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用。 

数组名的理解

在使用指针访问数组的内容时,有这样的代码:

上面两种写法都是对的,用代码验证一下。

&arr[0]的写法:

#include <stdiio.h>
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[] = { 1,2,3,4,5 };int sz = sizeof(arr) / sizeof(arr[0]);Print(&arr[0], sz);return 0;
}

arr的写法:

#inlcude <stdio.h>
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[] = { 1,2,3,4,5 };int sz = sizeof(arr) / sizeof(arr[0]);Print(arr, sz);return 0;
}

我们可以看到这两个代码的结果是一模一样的。就说明&arr[0]与arr是一样的。换句话说,数组名就是数组首元素的地址。但是有两种情况是例外:

• sizeof(数组名),sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小, 单位是字节

• &数组名,这里的数组名表示整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素的地址是有区别的) 除此之外,任何地方使用数组名,数组名都表示首元素的地址。

我们可以通过打印的结果知道: sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小。

这些是十六进制,通过计算可以得知:&arr[0]和&arr[0]+1相差4个字节,是因为&arr[0] 都是首元素的地址,+1就是跳过一个元素。但是&arr 和 &arr+1相差40个字节,这就是因为&arr是数组的地址,+1 操作是跳过整个数组的。

但是在用代码证明时,有的小伙伴,可能会写成下面的代码,从而无法证明。

之所以会这样,是因为这个&arr,是指整个数组,而这个p1是一个指针变量,只能存放一个地址,不能将整个地址给存放。如果强行这样做,就导致整个p1,只是存了第一个元素的地址。达不到我们的预期。

使用指针访问数组 

有了前面知识的支持,再结合数组的特点,我们就可以很方便的使用指针访问数组了。

练习:用指针实现数组的输入和输出。

#include <stdio.h>
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);int* p = arr;int i = 0;for (i = 0; i < sz; i++){scanf("%d", p + i);}for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}

我们再分析一下,数组名arr是数组首元素的地址,可以赋值给p,其实数组名arr和p在这里是等价的。那我们可以使用arr[i]可以访问数组的元素,那p[i]是否也可以访问数组呢? 

所以本质上p[i] 是等价于 *(p+i)。我们可以理解为[ ] == * 。

一维数组传参的本质

数组是可以传递给函数的,我们讨论一下数组传参的本质。 首先从一个问题开始,我们之前都是在函数外部计算数组的元素个数,那我们可以把数组传给一个函数后,函数内部求数组的元素个数吗?

我们发现在函数内部是没有正确获得数组的元素个数。 这就要学习数组传参的本质了,上面验证了:数组名是数组首元素的地址;那么在数组传参的时候,传递的是数组名,也就是说本质上数组传参本质上传递的是数组首元素的地址。 所以函数形参的部分理论上应该使用指针变量来接收首元素的地址。那么在函数内部我们写 sizeof(arr) 计算的是一个指针的大小(单位字节)而不是数组的大小(单位字节)。正是因为函数的参数部分是本质是指针,所以在函数内部是没办法求的数组元素个数的。 而这个sz2的值是和32位平台还是64位有关。因为指针变量的大小在32位平台下是4个字节,64位是8个字节。

总结:一维数组传参,形参的部分可以写成数组的形式,也可以写成指针的形式。

冒泡排序

冒泡排序的核心思想就是:两两相邻的元素进行比较。

冒泡排序是一种算法,用来解决数组内部元素有序的问题。比如:有一个数组,内部元素杂乱无章,但是我们要的是一个降序的数组。这时就可以采用冒泡排序的方法。具体怎么实现呢?我就用画图的方式给大家展现出来。

到这里这个代码也就可以写出来了。

#include <stdio.h>
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int j = 0;for (j = 0; j < sz - 1; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;}}}
}
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);Init(arr, sz);bubble_sort(arr, sz);//改成降序Print(arr, sz);return 0;
}

但是如果我们再仔细分析的话,就会发现在每一趟的元素比较中,需要比较的元素个数是随着趟数的增加,变得越来越少。举例:第一趟要比较10个数,得出一个数是最小的之后,第二趟来比较时,就不需要和那个第一趟比较出的数再来比较了。因为第一趟比较出的数之所以最小,是因为它在这是个元素中是最小的,那么第二趟比较出的那个最小数,一定比那个第一趟比较出的那个数要大才行。以此类推,第二趟比较9个数就是j到7就可以了(j+1等于8,第九个数的下标是8),第三趟比较8个数就是j到6就可以了。那么最终的规律就是j<sz-1-i。

改进的代码:

#include <stdio.h>
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int j = 0;for (j = 0; j < sz - 1 - i; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;}}}
}
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);Init(arr, sz);bubble_sort(arr, sz);//改成降序Print(arr, sz);return 0;
}

其实到这里了,这个代码还能够优化一点:如果我们的数组里,就只有一个元素不是有序的,其余的都是有顺序的,因此我们只需要比较一次就可以了。

如果这个数组是9 8 7 6 5 4 3 2 1 10,这个想要变成降序,就需要走9趟了。因为第一趟就只能把1和10换位置。还剩下其它的数要换,就只能走9趟 

那么怎么判断这个数组比较过后是有序还是无序呢?

法一:可以定义一个flag变量,初始化为1。如果这个有序了,啥也不干,那么就令它为0;否则就是1。每走完一趟之后就可以根据flag的值,判断是否有序。如果是0,就说明这个数组有序,跳出循环。

#include <stdio.h>
//void init(int* p, int sz)
//{
//	int i = 0;
//	for (i = 0; i < sz; i++)
//	{
//		scanf("%d", (p + i));
//	}
//}
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int flag = 1;//注意这个定义的位置。int j = 0;for (j = 0; j < sz - 1 - i; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;flag = 0;//一旦进入就变为0。}	}if (flag == 1)//等于1,代表if一次也没有执行。{break;}}
}
void print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 9,10,8,7,6,5,4,3,2,1 };int sz = sizeof(arr) / sizeof(arr[0]);//init(arr, sz);bubble_sort(arr, sz);//改成降序print(arr, sz);return 0;
}

法二:可以定义一个变量count,如果这个一趟里面每没有执行一次,count就++。一趟走完之后,如果count==sz-1-i,那么说明这个数组已经有序,就跳出循环。

#include <stdio.h>
//void Init(int* p, int sz)
//{
//	int i = 0;
//	for (i = 0; i < sz; i++)
//	{
//		scanf("%d", (p + i));
//	}
//}
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int j = 0;int count = 0;//注意这个定义的位置,如果定义在趟数的外面,这个count就会累加for (j = 0; j < sz - 1 - i; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;}else{count++;}}if (count == sz - 1 - i)如果count等于这个,就说明if一次也没有执行{break;}}
}
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 9,10,8,7,6,5,4,3,2,1 };int sz = sizeof(arr) / sizeof(arr[0]);//Init(arr, sz);bubble_sort(arr, sz);//改成降序Print(arr, sz);return 0;
}

上面有些代码被注释,是为了更好的调试观察。当然大家可以把那些注释去掉。 

上面两种优化可以通过调试来观察是否优化成功(VS的调试方法在我往期的文章里,可以去主页里找) 。

 感觉四篇文章可能写不完指针的所有内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/661862.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PySpark(二)RDD基础、RDD常见算子

目录 RDD RDD五大特性 RDD创建 RDD算子 常见的Transformation算子 map flatMap mapValues reduceByKey groupBy filter distinct union join intersection glom groupByKey groupByKey和reduceByKey的区别 ? sortBy sortByKey 常见的action算子 countByKey…

Python入门到精通(七)——Python文件操作

Python文件操作 一、文件的编码 二、文件的读取 1、操作汇总 2、model 常用的三种基础访问模式 三、文件的写入 四、文件的追加 五、综合案例 一、文件的编码 1、什么是编码&#xff1f; 编码就是一种规则集合&#xff0c;记录了内容和二进制间进行相互转换的逻辑。编…

Flink1.14新版KafkaSource和KafkaSink实践使用(自定义反序列化器、Topic选择器、序列化器、分区器)

前言 在官方文档的描述中&#xff0c;API FlinkKafkaConsumer和FlinkKafkaProducer将在后续版本陆续弃用、移除&#xff0c;所以在未来生产中有版本升级的情况下&#xff0c;新API KafkaSource和KafkaSink还是有必要学会使用的。下面介绍下基于新API的一些自定义类以及主程序的…

解析Excel文件内容,按每列首行元素名打印出某个字符串的统计占比(超详细)

1.示例&#xff1a; 开发需求&#xff1a;读取Excel文件&#xff0c;统计第3列到第5列中每列的"False"字段占比&#xff0c;统计第6列中的"Pass"字段占比&#xff0c;并按每列首行元素名打印出统计占比 1.1 实现代码1&#xff1a;列数为常量 请确保替换y…

测试access和trunk口的区别(华为)

思科设备参考&#xff1a;测试access和trunk口的区别&#xff08;思科&#xff09; 一&#xff0c;实验目的 实现同一 Vlan 内的主机互通&#xff0c;不同 Vlan 间的主机隔离。 二&#xff0c;配置前测试 PC1分别ping PC2、PC3、PC4都能通&#xff0c;因为四台PC默认同处于v…

一文掌握SpringBoot注解之@Configuration知识文集(2)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

【JAVA】单例模式的线程安全性

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;JAVA ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 正文 我的其他博客 正文 老生常谈的问题了&#xff0c;首先要说的是单例模式的线程安全意味着&#xff1a;某个类的实例在多线程环境 下只会被…

main函数中参数argc和argv用法解析

1 基础 argc 是 argument count 的缩写&#xff0c;表示传入main函数的参数个数&#xff1b; argv 是 argument vector 的缩写&#xff0c;表示传入main函数的参数序列或指针&#xff0c;并且第一个参数argv[0]一定是程序的名称&#xff0c;并且包含了程序所在的完整路径&…

深度解读NVMe计算存储协议-2

近日&#xff0c;NVME协议组织为了解决这些性能问题并为供应商提供标准化机制&#xff0c;在其架构中集成优化的计算功能&#xff0c;开发了NVM Express (NVMe) 计算存储特性。 计算存储的核心特性包括两个命令集&#xff1a;计算程序集和子系统本地内存。 其中&#xff0c;计算…

python-分享篇-Turtle海龟-画图

文章目录 背景颜色画圆太阳花树椭圆 背景颜色 import turtlepen turtle.Turtle() turtle.Screen().bgcolor("blue") pen.color("cyan") for i in range(10):for i in range(2):pen.forward(100)pen.right(60)pen.forward(100)pen.right(120)pen.right(36…

供应商规模成倍增长,医疗器械制造商如何让采购效率更进一步|创新场景50...

ITValue 随着企业的快速发展&#xff0c;采购供应链网络日益庞大&#xff0c;企业在供应商管理上面临着管理体系分散、风险难以管控&#xff0c;采购过程环节多等问题&#xff0c;供应商内外协同亟待解决。 作者&#xff5c;秦聪慧 专题&#xff5c;创新场景50 ITValue 制造企业…

Node.js之内存限制理解_对处理前端打包内存溢出有所帮助

Node.js内存限制理解_对处理前端打包内存溢出有所帮助 文章目录 Node.js内存限制理解_对处理前端打包内存溢出有所帮助Node.js内存限制1. 查看Node.js默认内存限制1. Ndos.js_V20.10.02. Node.js_V18.16.0 2. V8引擎垃圾回收相关Heap organization堆组织 Node.js内存限制 默认情…

Lazysysadmin

信息收集 # nmap -sn 192.168.1.0/24 -oN live.port Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-30 21:10 CST Nmap scan report for 192.168.1.1 (192.168.1.1) Host is up (0.00075s latency). MAC Address: 00:50:56:C0:00:08 (VMware) Nma…

Docker容器化安装SonarQube9.9

文章目录 1.环境准备1.1 版本信息1.2 系统设置 2.Docker环境安装2.1 卸载旧版本2.2 设置源2.3 安装Docker2.4 设置阿里仓库2.5 启动Docker 3.Docker Compose4.登录4.1 首页4.2 安装插件 5.制作镜像离线安装 1.环境准备 1.1 版本信息 名称版本备注Docker25.0.1当前2024-01-01最…

《C程序设计》上机实验报告(五)之一维数组二维数组与字符数组

实验内容&#xff1a; 1.运行程序 #include <stdio.h> void main( ) { int i,j,iRow0,iCol0,m; int x[3][4]{{1,11,22,33},{2,28,98,38},{3,85,20,89}}; mx[0][0]; for(i0;i<3;i) for(j0;j<4;j) if (x[i][j]>m) { mx[i][j]; iRowi…

Elasticsearch:将文档级安全性 (DLS) 添加到你的内部知识搜索

作者&#xff1a;来自 Elastic Sean Story 你的企业很可能淹没在内部数据中。 你拥有问题跟踪、笔记记录、会议记录、维基页面、视频录制、聊天以及即时消息和私信。 并且不要忘记电子邮件&#xff01; 难怪如此多的企业都在尝试创造工作场所搜索体验 - 为员工提供集中、一站…

react 之 UseReducer

UseReducer作用: 让 React 管理多个相对关联的状态数据 import { useReducer } from react// 1. 定义reducer函数&#xff0c;根据不同的action返回不同的新状态 function reducer(state, action) {switch (action.type) {case INC:return state 1case DEC:return state - 1de…

【飞书小技巧】——飞书文档转 markdown 详细教程

飞书文档转 markdown 详细教程 基于项目:https://github.com/Wsine/feishu2md 如何使用 在线版 访问 https://feishu2md.onrender.com/ 粘贴文档链接即可&#xff0c;文档链接可以通过 分享 > 开启链接分享 > 复制链接 获得。 点击下载之后,会提示 Please wait. It ma…

2024/2/1学习记录

echarts 为柱条添加背景色&#xff1a; 若想设置折线图的点的样式&#xff0c;设置 series.itemStyle 指定填充颜色就好了&#xff0c;设置线的样式设置 lineStyle 就好了。 在折线图中倘若要设置空数据&#xff0c;用 - 表示即可&#xff0c;这对于其他系列的数据也是 适用的…

【C/C++】C/C++编程——整型(二)

在 C 中&#xff0c;整型数据可以分为有符号数&#xff08;Signed&#xff09;和无符号数&#xff08;Unsigned&#xff09;&#xff0c;这两种类型主要用于表示整数值&#xff0c;但它们在表示范围和用途方面有所不同。默认情况下&#xff0c;整数类型如 int、short、long 都是…