【网络基础】网络协议传输层UDP和TCP

UDP

解包和分用

解包(解析数据包)

  1. 捕获数据包:首先,接收端的网络栈捕获UDP数据包。
  2. 检查目的端口:接收端检查数据包头部的目的端口,以确定哪个应用程序应该接收该数据包。
  3. 验证校验和:接收端可能会计算并验证数据包的校验和,以检测数据在传输过程中是否出现错误。如果校验和不匹配,数据包通常会被丢弃。
  4. 提取数据载荷:如果校验和正确,接收端提取数据载荷并将其传递给相应的应用程序。

分用(Demultiplexing)

分用是指将接收到的数据包定向到正确的应用程序或进程的过程。

  1. 端口号匹配:分用主要依赖于端口号。每个UDP数据包都有一个目的端口号,接收端使用这个号码将数据包路由到绑定了该端口号的应用程序。
  2. 应用程序处理:应用程序监听其绑定的端口,接收到数据包后,它会根据自己的逻辑和协议来处理数据。

认识知名端口号

UDP的特点

TCP 

报头的理解

字段

报头理解

tcp的可靠性

超时时间

三次握手

四次挥手

FIN_WAIT状态

FIN_WAIT状态分为两个子状态:FIN_WAIT_1FIN_WAIT_2

  1. FIN_WAIT_1

    • 这个状态发生在已经发送了FIN段的一方(通常是客户端)关闭TCP连接的初始请求后,正在等待对端的ACK确认。
    • 如果收到ACK,状态转移到FIN_WAIT_2
  2. FIN_WAIT_2

    • 在这个状态下,发送FIN的一方已经接收到ACK确认,并等待对端的FIN请求,表明对端也准备关闭连接了。

CLOSE_WAIT状态

当一个TCP端点接收到对端的FIN请求,它会发送ACK确认并进入CLOSE_WAIT状态。在CLOSE_WAIT状态下,TCP端点等待本地用户进程执行关闭操作,发送自己的FIN段。

流量控制



滑动窗口

刚才我们讨论了确认应答策略, 对每一个发送的数据段, 都要给一个ACK确认应答. 收到ACK后再发送下一个数据段.
这样做有一个比较大的缺点, 就是性能较差. 尤其是数据往返的时间较长的时候.

拥塞控制

虽然TCP有了滑动窗口这个大杀器, 能够高效可靠的发送大量的数据. 但是如果在刚开始阶段就发送大量的数据, 仍然可能引发问题.
因为网络上有很多的计算机, 可能当前的网络状态就已经比较拥堵. 在不清楚当前网络状态下, 贸然发送大量的数据,是很有可能引起雪上加霜的.
TCP引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;

慢启动

延迟应答
如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小.
假设接收端缓冲区为1M. 一次收到了500K的数据; 如果立刻应答, 返回的窗口就是500K;
但实际上可能处理端处理的速度很快, 10ms之内就把500K数据从缓冲区消费掉了;
在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;
如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;
一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;


那么所有的包都可以延迟应答么? 肯定也不是;
数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;
具体的数量和超时时间, 依操作系统不同也有差异; 一般N取2, 超时时间取200ms;

捎带应答
在延迟应答的基础上, 我们发现, 很多情况下, 客户端服务器在应用层也是 "一发一收" 的. 意味着客户端给服务器说了 "How are you", 服务器也会给客户端回一个 "Fine, thank you";
那么这个时候ACK就可以搭顺风车, 和服务器回应的 "Fine, thank you" 一起回给客户端

面向字节流


创建一个TCP的socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区;
调用write时, 数据会先写入发送缓冲区中;
如果发送的字节数太长, 会被拆分成多个TCP的数据包发出;
如果发送的字节数太短, 就会先在缓冲区里等待, 等到缓冲区长度差不多了, 或者其他合适的时机发送出去;
接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区;
然后应用程序可以调用read从接收缓冲区拿数据;
另一方面, TCP的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工
由于缓冲区的存在, TCP程序的读和写不需要一一匹配, 例如:
写100个字节数据时, 可以调用一次write写100个字节, 也可以调用100次write, 每次写一个字节;
读100个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100个字节, 也可以一次read一个字节, 重复100次;

粘包问题


首先要明确, 粘包问题中的 "包" , 是指的应用层的数据包.
在TCP的协议头中, 没有如同UDP一样的 "报文长度" 这样的字段, 但是有一个序号这样的字段.
站在传输层的角度, TCP是一个一个报文过来的. 按照序号排好序放在缓冲区中.
站在应用层的角度, 看到的只是一串连续的字节数据.
那么应用程序看到了这么一连串的字节数据, 就不知道从哪个部分开始到哪个部分, 是一个完整的应用层数据包.
那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.
对于定长的包, 保证每次都按固定大小读取即可; 例如上面的Request结构, 是固定大小的, 那么就从缓冲区从头开始按sizeof(Request)依次读取即可;
对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;
对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔符不和正文冲突即可);


思考: 对于UDP协议来说, 是否也存在 "粘包问题" 呢?
对于UDP, 如果还没有上层交付数据, UDP的报文长度仍然在. 同时, UDP是一个一个把数据交付给应用层. 就有很明确的数据边界.
站在应用层的站在应用层的角度, 使用UDP的时候, 要么收到完整的UDP报文, 要么不收. 不会出现"半个"的情况.


TCP异常情况


进程终止: 进程终止会释放文件描述符, 仍然可以发送FIN. 和正常关闭没有什么区别.
机器重启: 和进程终止的情况相同.
机器掉电/网线断开: 接收端认为连接还在, 一旦接收端有写入操作, 接收端发现连接已经不在了, 就会进行reset. 即使没有写入操作, TCP自己也内置了一个保活定时器, 会定期询问对方是否还在. 如果对方不在, 也会把连接释放.
另外, 应用层的某些协议, 也有一些这样的检测机制. 例如HTTP长连接中, 也会定期检测对方的状态. 例如QQ, 在QQ断线之后, 也会定期尝试重新连接.

基于TCP应用层协议


HTTP
HTTPS
SSH
Telnet
FTP
SMTP

TCP/UDP对比


我们说了TCP是可靠连接, 那么是不是TCP一定就优于UDP呢? TCP和UDP之间的优点和缺点, 不能简单, 绝对的进行
比较
TCP用于可靠传输的情况, 应用于文件传输, 重要状态更新等场景;
UDP用于对高速传输和实时性要求较高的通信领域, 例如, 早期的QQ, 视频传输等. 另外UDP可以用于广播;
归根结底, TCP和UDP都是程序员的工具, 什么时机用, 具体怎么用, 还是要根据具体的需求场景去判定

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/660942.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿赵UE学习笔记——14、LOD

阿赵UE学习笔记目录   大家好,我是阿赵。   继续学习虚幻引擎的用法。这次看看虚幻引擎的Level Of Detail(LOD)的用法。 一、测试场景准备 用植物系统,在地形上面刷了好多草: 这个时候看一下网格,会发现网格比较多和密集。 …

CentOS部署Docker Registry镜像仓库并结合内网穿透实现远程访问

文章目录 1. 部署Docker Registry2. 本地测试推送镜像3. Linux 安装cpolar4. 配置Docker Registry公网访问地址5. 公网远程推送Docker Registry6. 固定Docker Registry公网地址 Docker Registry 本地镜像仓库,简单几步结合cpolar内网穿透工具实现远程pull or push (拉取和推送)…

因子图、边缘化与消元算法的抽丝剥茧 —— Notes for “Factor Graphs for Robot Perception“

Title: 因子图、边缘化与消元算法的抽丝剥茧 —— Notes for “Factor Graphs for Robot Perception” 文章目录 I. 前言II. 因子图的基本概念1. 因子图的定义2. SLAM 中的因子图A. 因子图的图示B. 因子图的因式C. 因子图的二分图形式 III. 边缘化与消元运算的基本原理1. 边缘化…

全网最简单的幻兽帕鲁服务器搭建教程

幻兽帕鲁是一款备受欢迎的多人在线游戏,为了提供更好的游戏体验,许多玩家选择自行搭建服务器。本文将指导大家如何简单快速地搭建幻兽帕鲁服务器,轻松享受游戏的乐趣。 第一步:购买游戏联机服务器 购买入口:https://tx…

shell - 免交互

一.Here Document 免交互 1. 交互的概念 交互:当计算机播放某多媒体程序的时候,编程人员可以发出指令控制该程序的运行,而不是程序单方面执行下去,程序在接受到编程人员相应的指令后而相应地做出反应。 对于Linux操作系统中&…

Three.js学习1:threejs简介及文档本地部署

开一个天坑,Three.js 我觉得未来3D页面一定是一个趋势。 -----------------------------华丽的分割线------------------------- github:https://github.com/mrdoob/three.js/ 官网:Three.js – JavaScript 3D Library Threejs官网中文文…

LaTeX教程(001)-LaTeX文档结构(01)

LaTeX教程(001)- LaTeX \LaTeX LATE​X文档结构(01) 说在前面 这是我本人学习《The LaTeX Companion》第三版的笔记,但并不是翻译。 书籍的第一章对 LaTeX \LaTeX LATE​X及其历史进行了相当长的介绍,这是几乎每一本关于 LaTeX \LaTeX LATE​X的书都会…

如何一键更新幻兽帕鲁服务器?腾讯云轻量应用服务器版

如何在不需要远程登录服务器的情况下,通过一行命令来更新幻兽帕鲁呢? 腾讯云轻量云一键部署幻兽帕鲁服务器教程:https://curl.qcloud.com/pzBO9wN7 首先是幻兽帕鲁Windows服务器版,只需要在腾讯云的轻量应用服务器详情页&#x…

《苍穹外卖》电商实战项目实操笔记系列(P123~P184)【下】

史上最完整的《苍穹外卖》项目实操笔记系列【下篇】,跟视频的每一P对应,全系列10万字,涵盖详细步骤与问题的解决方案。如果你操作到某一步卡壳,参考这篇,相信会带给你极大启发。 上篇:P1~P65《苍穹外卖》项…

C#中使用OpenCvSharp4库读取本地图像并显示

C#中使用OpenCvSharp4库读取本地图像并显示 OpenCvSharp4是基于.NET 的 OpenCV 包装器,OpenCV源代码是采用C和C写的,目前对于C和Python开发者相对来说比较友好,对于Python开发者而言官方提供了opencv-python使用。 首选我们使用Visual Studi…

运动编辑学习笔记

目录 跳舞重建: 深度运动重定向 Motion Preprocessing Tool anim_utils MotionBuilder 跳舞重建: https://github.com/Shimingyi/MotioNet 深度运动重定向 https://github.com/DeepMotionEditing/deep-motion-editin 游锋生/deep-motion-editin…

uni-app app引入天地图

话不多说咸鱼来了 <template><view><div class"mapBox" style"width: 100%; height: 100vh;background: #ddc0c0;" id"mapId" ></div></view> </template> <script module"test" lang"r…

不废话的将ts一篇文章写完

写在前面 网上很多写ts的教程的&#xff0c;但是我觉得写的太繁琐了&#xff0c;这里我直接将基础用法写上&#xff0c;包括编译后的js代码&#xff0c;以便于你们进行对比&#xff0c; 包括一些常见的报错信息&#xff0c;你们可以对比一下报错信息&#xff0c; 我尽量不废话的…

【模型微调】| 各类微调模型总结 P-Tuning,Prefix,P-tuning v2,LoRA

文章目录 1 微调背景1.1 Full fine-tuning 全参数微调&#xff08;FFT&#xff09;1.2 parameter-Efficient-fine-tuning 部分参数微调&#xff08;PEFT&#xff09; 2 提示词调整训练法2.1 P-Tuning2.2 Prefix2.3 P-Tuning v2 3 结构调整训练法3.1 Adapter tuning3.2 LoRA 微调…

PySimpleGUI 综合应用|英语文本朗读以及转换为语音Mp3

PySimpleGUI 综合应用 目录 PySimpleGUI 综合应用 应用界面 完整代码 所需模块 PySimpleGUI pyttsx3 pyaudio rapidfuzz 字典格式 应用界面 完整代码 英语朗读器.pyw import PySimpleGUI as sg import pyttsx3,pyaudio,pyperclip import os,re,datetime,wave,threa…

java基础(面试用)

一、基本语法 1. 注释有哪几种形式&#xff1f; //单行注释&#xff1a;通常用于解释方法内某单行代码的作用。 //int i 0;//多行注释&#xff1a;通常用于解释一段代码的作用。 //int i 0; //int i 0;//文档注释&#xff1a;通常用于生成 Java 开发文档。 /* *int i 0; …

springboot139华强北商城二手手机管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

静态时序分析:时序弧以及其时序敏感(单调性)

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中&#xff0c;不管是组合逻辑单元&#xff08;如与门、或门、与非门等&#xff09;还是时序逻辑&#xff08;D触发器等&#xff09;在时序建模时…

如何提高工业数据采集的效率和准确性-天拓四方

随着工业4.0和智能制造的兴起&#xff0c;工业数据采集的重要性日益凸显。通过数据采集&#xff0c;企业能够实时监控生产过程&#xff0c;优化资源配置&#xff0c;提高生产效率。在实时监控、生产优化、质量控制等方面&#xff0c;有效的数据采集系统能够为企业提供宝贵的洞察…

幻兽帕鲁服务器多少钱一台?腾讯云新版报价

腾讯云幻兽帕鲁服务器4核16G、8核32G和16核64G配置可选&#xff0c;4核16G14M带宽66元一个月、277元3个月&#xff0c;8核32G22M配置115元1个月、345元3个月&#xff0c;16核64G35M配置580元年1个月、1740元3个月、6960元一年&#xff0c;腾讯云百科txybk.com分享腾讯云幻兽帕鲁…