UDP
解包和分用
解包(解析数据包)
- 捕获数据包:首先,接收端的网络栈捕获UDP数据包。
- 检查目的端口:接收端检查数据包头部的目的端口,以确定哪个应用程序应该接收该数据包。
- 验证校验和:接收端可能会计算并验证数据包的校验和,以检测数据在传输过程中是否出现错误。如果校验和不匹配,数据包通常会被丢弃。
- 提取数据载荷:如果校验和正确,接收端提取数据载荷并将其传递给相应的应用程序。
分用(Demultiplexing)
分用是指将接收到的数据包定向到正确的应用程序或进程的过程。
- 端口号匹配:分用主要依赖于端口号。每个UDP数据包都有一个目的端口号,接收端使用这个号码将数据包路由到绑定了该端口号的应用程序。
- 应用程序处理:应用程序监听其绑定的端口,接收到数据包后,它会根据自己的逻辑和协议来处理数据。
认识知名端口号
UDP的特点
TCP
报头的理解
字段
报头理解
tcp的可靠性
超时时间
三次握手
四次挥手
FIN_WAIT状态
FIN_WAIT
状态分为两个子状态:FIN_WAIT_1
和FIN_WAIT_2
。
-
FIN_WAIT_1:
- 这个状态发生在已经发送了FIN段的一方(通常是客户端)关闭TCP连接的初始请求后,正在等待对端的ACK确认。
- 如果收到ACK,状态转移到
FIN_WAIT_2
。
-
FIN_WAIT_2:
- 在这个状态下,发送FIN的一方已经接收到ACK确认,并等待对端的FIN请求,表明对端也准备关闭连接了。
CLOSE_WAIT状态
当一个TCP端点接收到对端的FIN请求,它会发送ACK确认并进入CLOSE_WAIT
状态。在CLOSE_WAIT
状态下,TCP端点等待本地用户进程执行关闭操作,发送自己的FIN段。
流量控制
滑动窗口
刚才我们讨论了确认应答策略, 对每一个发送的数据段, 都要给一个ACK确认应答. 收到ACK后再发送下一个数据段.
这样做有一个比较大的缺点, 就是性能较差. 尤其是数据往返的时间较长的时候.
拥塞控制
虽然TCP有了滑动窗口这个大杀器, 能够高效可靠的发送大量的数据. 但是如果在刚开始阶段就发送大量的数据, 仍然可能引发问题.
因为网络上有很多的计算机, 可能当前的网络状态就已经比较拥堵. 在不清楚当前网络状态下, 贸然发送大量的数据,是很有可能引起雪上加霜的.
TCP引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;
慢启动
延迟应答
如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小.
假设接收端缓冲区为1M. 一次收到了500K的数据; 如果立刻应答, 返回的窗口就是500K;
但实际上可能处理端处理的速度很快, 10ms之内就把500K数据从缓冲区消费掉了;
在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;
如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;
一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么? 肯定也不是;
数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;
具体的数量和超时时间, 依操作系统不同也有差异; 一般N取2, 超时时间取200ms;
捎带应答
在延迟应答的基础上, 我们发现, 很多情况下, 客户端服务器在应用层也是 "一发一收" 的. 意味着客户端给服务器说了 "How are you", 服务器也会给客户端回一个 "Fine, thank you";
那么这个时候ACK就可以搭顺风车, 和服务器回应的 "Fine, thank you" 一起回给客户端
面向字节流
创建一个TCP的socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区;
调用write时, 数据会先写入发送缓冲区中;
如果发送的字节数太长, 会被拆分成多个TCP的数据包发出;
如果发送的字节数太短, 就会先在缓冲区里等待, 等到缓冲区长度差不多了, 或者其他合适的时机发送出去;
接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区;
然后应用程序可以调用read从接收缓冲区拿数据;
另一方面, TCP的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工
由于缓冲区的存在, TCP程序的读和写不需要一一匹配, 例如:
写100个字节数据时, 可以调用一次write写100个字节, 也可以调用100次write, 每次写一个字节;
读100个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100个字节, 也可以一次read一个字节, 重复100次;
粘包问题
首先要明确, 粘包问题中的 "包" , 是指的应用层的数据包.
在TCP的协议头中, 没有如同UDP一样的 "报文长度" 这样的字段, 但是有一个序号这样的字段.
站在传输层的角度, TCP是一个一个报文过来的. 按照序号排好序放在缓冲区中.
站在应用层的角度, 看到的只是一串连续的字节数据.
那么应用程序看到了这么一连串的字节数据, 就不知道从哪个部分开始到哪个部分, 是一个完整的应用层数据包.
那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.
对于定长的包, 保证每次都按固定大小读取即可; 例如上面的Request结构, 是固定大小的, 那么就从缓冲区从头开始按sizeof(Request)依次读取即可;
对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;
对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔符不和正文冲突即可);
思考: 对于UDP协议来说, 是否也存在 "粘包问题" 呢?
对于UDP, 如果还没有上层交付数据, UDP的报文长度仍然在. 同时, UDP是一个一个把数据交付给应用层. 就有很明确的数据边界.
站在应用层的站在应用层的角度, 使用UDP的时候, 要么收到完整的UDP报文, 要么不收. 不会出现"半个"的情况.
TCP异常情况
进程终止: 进程终止会释放文件描述符, 仍然可以发送FIN. 和正常关闭没有什么区别.
机器重启: 和进程终止的情况相同.
机器掉电/网线断开: 接收端认为连接还在, 一旦接收端有写入操作, 接收端发现连接已经不在了, 就会进行reset. 即使没有写入操作, TCP自己也内置了一个保活定时器, 会定期询问对方是否还在. 如果对方不在, 也会把连接释放.
另外, 应用层的某些协议, 也有一些这样的检测机制. 例如HTTP长连接中, 也会定期检测对方的状态. 例如QQ, 在QQ断线之后, 也会定期尝试重新连接.
基于TCP应用层协议
HTTP
HTTPS
SSH
Telnet
FTP
SMTP
TCP/UDP对比
我们说了TCP是可靠连接, 那么是不是TCP一定就优于UDP呢? TCP和UDP之间的优点和缺点, 不能简单, 绝对的进行
比较
TCP用于可靠传输的情况, 应用于文件传输, 重要状态更新等场景;
UDP用于对高速传输和实时性要求较高的通信领域, 例如, 早期的QQ, 视频传输等. 另外UDP可以用于广播;
归根结底, TCP和UDP都是程序员的工具, 什么时机用, 具体怎么用, 还是要根据具体的需求场景去判定