TensorFlow2实战-系列教程4:数据增强

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

猫狗识别1
数据增强
猫狗识别2------数据增强
猫狗识别3------迁移学习

对于图像数据,将其进行翻转、放缩、平移、旋转操作就可以得到一组新的数据:
在这里插入图片描述

1、展示输入输出

import matplotlib.pyplot as plt
from PIL import Image
%matplotlib inline
from keras.preprocessing import image
import keras.backend as K
import os
import glob
import numpy as np
def print_result(path):name_list = glob.glob(path)fig = plt.figure(figsize=(12,16))for i in range(3):img = Image.open(name_list[i])sub_img = fig.add_subplot(131+i)sub_img.imshow(img)
img_path = './img/superman/*'
in_path = './img/'
out_path = './output/'
name_list = glob.glob(img_path)
print(name_list)
print_result(img_path)
  1. img_path 就是存放3张图像数据的路径,in_path 、out_path 暂时没用到
  2. name_list 查看一下三张数据的路径字符信息
  3. print_result就是一个专门用来打印3张图像的函数

打印结果:

[‘./img/superman\00000008.jpg’,
‘./img/superman\00000009.jpg’,
‘./img/superman\00000010.jpg’]

在这里插入图片描述

2、调整图像大小

datagen = image.ImageDataGenerator()
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False,  save_to_dir=out_path+'resize',save_prefix='gen', target_size=(224, 224))
  1. 创建一个数据增强的实例
  2. 指定参数加载图像数据
  3. save_to_dir=out_path+‘resize’,用到了前面的输出路径
  4. 指定了target_size参数后图像都会被重置成这个尺寸
for i in range(3):gen_data.next()
print_result(out_path+'resize/*')

从数据生成器中获取数据,将图像打印出来
打印结果:
在这里插入图片描述

3、旋转图像

datagen = image.ImageDataGenerator(rotation_range=45)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rotation_range',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'rotation_range/*')
  1. 创建一个旋转的数据增强实例,
  2. 创建一个数据增强实例,实际上就是直接加载数据
  3. 将加载的图像数据重置尺寸
  4. 将重置尺寸的图像转换成ndarray格式
  5. 将旋转数据增强应用到重置尺寸的图像数据中
  6. 使用数据增强生成器重新从目录加载数据
  7. 保存加载的数据
  8. 使用for循环:
  9. 生成并处理三个图像,由于设置了 save_to_dir,这些图像将被保存。
  10. 打印三个图像

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

4、平移变换

datagen = image.ImageDataGenerator(width_shift_range=0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'shift/*')

与3中不同的是,这段代码是进行平移变换进行数据增强,指定了平移变换的参数,width_shift_range=0.3,height_shift_range=0.3,这两个参数分别表示会在水平方向和垂直方向±30%的范围内随机移动

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

datagen = image.ImageDataGenerator(width_shift_range=-0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift2',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'shift2/*')

由于是随机的,这两段代码完全一样,但是结果却不同
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

5、缩放

datagen = image.ImageDataGenerator(zoom_range=0.5)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'zoom',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'zoom/*')

这段代码与3中不同的就是,这里指定缩放参数来进行缩放数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

6、channel_shift

datagen = image.ImageDataGenerator(channel_shift_range=15)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'channel',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'channel/*')

这段代码与3中不同的就是,这里指定通道偏移参数来进行通道偏移数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

7、水平翻转

datagen = image.ImageDataGenerator(horizontal_flip=True)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'horizontal',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'horizontal/*')

这段代码与3中不同的就是,这里指定水平翻转参数来进行水平翻转数据增强
在这里插入图片描述

8、rescale重新缩放

datagen = image.ImageDataGenerator(rescale= 1/255)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rescale',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'rescale/*')

这段代码与3中不同的就是,这里指定rescale重新缩放参数来进行rescale重新缩放数据增强
通常用于归一化图像数据。将图像像素值从 [0, 255] 缩放到 [0, 1] 范围,有助于模型的训练
在这里插入图片描述

9、填充方法

  • ‘constant’: kkkkkkkk|abcd|kkkkkkkk (cval=k)
  • ‘nearest’: aaaaaaaa|abcd|dddddddd
  • ‘reflect’: abcddcba|abcd|dcbaabcd
  • ‘wrap’: abcdabcd|abcd|abcdabcd
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'fill_mode',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'fill_mode/*')
  • fill_mode='wrap':当应用几何变换后,图像中可能会出现一些新的空白区域。fill_mode 定义了如何填充这些空白区域。在这种情况下,使用 'wrap' 模式,意味着空白区域将用图像边缘的像素“包裹”填充。
  • zoom_range=[4, 4]:这设置了图像缩放的范围。在这里,它被设置为在 4 倍范围内进行随机缩放。由于最小和最大缩放因子相同,这将导致所有图像都被放大 4 倍

用原图像填充,任何超出原始图像边界的区域将被图像的对边界像素填充
在这里插入图片描述

datagen = image.ImageDataGenerator(fill_mode='nearest', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'nearest',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'nearest/*')

使用最近点填充,每个空白区域的像素将取其最近的非空白区域的像素值
在这里插入图片描述

猫狗识别1
数据增强
猫狗识别2------数据增强
猫狗识别3------迁移学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/660231.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RS485自动收发电路震荡的问题

电路 设计初衷 电源5V 选择5V的原因,差分2.5V比1.5V可以提高传输能力 TTL输入 3.3V电平满足需求 TTL输出 4.5V了,MCU是3.3V平台 这样就分为两种情况 MCU接收端可以容忍5V输入 MCU接收端不可以容忍5V输入,就要进行电压转换,我这里使…

MacOS X 中 OpenGL 环境搭建 Makefile的方式

1,预备环境 安装 brew: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 安装glfw: brew install glfw 安装glew: brew install glew 2.编译 下载源代码…

本地搭建Plex私人影音网站并结合内网穿透实现公网远程访问

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【数据库】mysql触发器使用

题目: 创建职工表以及职工工资表职工表字段:工号,姓名,性别,年龄工资表字段:编号自增,职工工号,基础工资10000通过触发器实现:对职工进行添加时 工资表中也要体现当前职…

docker下,容器无法启动,要删除里面的文件

第一步:进入docker cd /var/lib/docker 第二步:查找,我这里是拼音分词器 find ./ -name py 第三步:得到路径 第四步:删除或复制或移动,我这里是删除py文件夹 rm -rf ./over那一串 第五步:想干…

D2025——双通道音频功率放大电路,外接元件少, 通道分离性好,3V 的低压下可正常使用

D2025 为立体声音频功率放大集成电路,适用于各类袖珍或便携式立体声 收录机中作功率放放大器。 D2025 采用 DIP16 封装形式。 主要特点:  适用于立体声或 BTL 工作模式  外接元件少  通道分离性好  电源电压范围宽(3V~12V…

【JavaEE spring】SpringBoot 统一功能处理

SpringBoot 统一功能处理 1. 拦截器1.1 拦截器快速⼊⻔1.2 拦截器详解1.2.1 拦截路径1.2.2 拦截器执⾏流程 1.3 登录校验1.3.1 定义拦截器1.3.2 注册配置拦截器 2. 统⼀数据返回格式2.1 快速⼊⻔2.2 存在问题2.3 案例代码修改2.4 优点 3. 统⼀异常处理 1. 拦截器 后端程序根据…

Chakra UI:构建 Web 设计的未来

Chakra UI:构建 Web 设计的未来 在当今的Web开发领域,构建现代、可访问的用户界面是一个重要的任务。为了满足这一需求,开发者需要一个强大而易用的UI组件库。而Chakra UI作为一个基于React的开源组件库,正是为了解决这个问题而诞…

vue3 [Vue warn]: Unhandled error during execution of scheduler flush

文章目录 前言一、报错截图二、排除问题思路相关问题 Vue3 优雅解决方法异步组件异同之处:好处:在使用异步组件时,有几个注意点: vue3 定义与使用异步组件 总结 前言 Bug 记录。开发环境运行正常,构建后时不时触发下面…

hal库stm32串口接收不定长数据

参考博客: https://blog.csdn.net/qq_41830158/article/details/121254705 按下面步骤修改实测可用 步骤: 添加串口接收所需变量   打开uart.c文件,在文件顶部的USER CODE BEGIN 0下方添加下列变量 volatile uint8_t rx1_len 0; //接收…

C语言第十五弹---操作符(上)

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 操作符 1、操作符的分类 2、二进制和进制转换 2.1、2进制转10进制 2.1.1、10进制转2进制数字 2.2、2进制转8进制和16进制 2.2.2、2进制转16进制 3. 原码、反…

C++完成使用map Update数据 二进制数据

1、在LXMysql.h和LXMysql.cpp分别定义和编写关于pin语句的代码 //获取更新数据的sql语句 where语句中用户要包含where 更新std::string GetUpdatesql(XDATA kv, std::string table, std::string where); std::string LXMysql::GetUpdatesql(XDATA kv, std::string table, std…

智能小车案例:基于Raspberry Pi的自动巡航与避障系统

项目背景 随着物联网技术的不断发展,智能小车成为了现代生活和工业自动化中的重要工具。为了实现智能小车的自动巡航与避障功能,我们采用了Raspberry Pi作为主控制器,结合传感器和执行器,构建了一个完整的系统。 所需材料 Raspber…

幻兽帕鲁:10秒开服,一键配置游戏参数教程!

随着游戏行业的不断发展,玩家们对于游戏体验的要求也越来越高。为了满足玩家们的需求,腾讯云提供了游戏联机服务器一键部署方案,本文将为大家详细介绍如何基于腾讯云服务器10秒钟完成开服和配置游戏参数,让大家的游戏体验更加顺畅…

服装产业转型升级,iPayLinks帮助企业拓展市场盈更多

从十万件的大订单转变为几百件的小订单,小单快反模式为中国服装出口带来了机遇,也带来了挑战。 “十三行-中大-鹭江”是广州曾经最具代表性的外贸服装产业带。在过去很长的一段时间里,服装外贸老板在这里创造“神话”:24小时内完…

spdk技术原理简介和实践经验

一、导读 与机械硬盘相比,NVMe-ssd在性能、功耗和密度上都有巨大的优势,并且随着固态存储介质的高速发展,其价格也在大幅下降,这些优势使得NVMe-ssd在分布式存储中使用越来越广泛。由于NVMe-ssd的性能比传统磁盘介质高出很多&…

jvm基础篇之垃圾回收[1](方法区、堆回收)

文章目录 垃圾回收类型手动垃圾回收:C/C的内存管理自动垃圾回收:Java的内存管理自动垃圾回收应用场景不同垃圾回收对比 线程不共享部分的回收方法区的回收手动触发回收 堆回收两种判断方法引用计数法查看垃圾回收日志可达性分析法GC Root对象类型可达性算…

函数式接口当参数使用

如果函数式接口作为一个方法的参数,就以为着要方法调用方自己实现业务逻辑,常见的使用场景是一个业务整体逻辑是不相上下的,但是在某一个步骤有不同的逻辑,例如数据处理有不同的策略,如果有大量的if-els,或…

机器学习4-多元线性回归

多元线性回归(Multiple Linear Regression)是线性回归的一种扩展形式,用于建立因变量与多个自变量之间的关系。在简单线性回归中,我们考虑一个因变量和一个自变量之间的线性关系,而多元线性回归允许我们考虑多个自变量对因变量的影响。 一般…

轻松录制视频,WPS录屏功能全攻略

“有人知道wps怎么录屏吗?老师要求我们录制一段视频,是关于课堂教学的,可是我不会录制文档,眼看就快到提交的时间了,现在真的很着急,希望大家帮帮我!” 随着信息技术的发展,录制屏幕…