时序预测 | MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比

时序预测 | MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比

目录

    • 时序预测 | MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

MATLAB实现基于PSO-LSTM、LSTM时间序列预测。
1.Matlab实现PSO-LSTM和LSTM神经网络时间序列预测;
2.输入数据为单变量时间序列数据,即一维数据;
3.运行环境Matlab2020及以上,依次运行Main1LSTMTS、Main2PSOLSTMTS、Main3CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
LSTM(长短时记忆模型)与粒子群算法优化后的LSTM(PSOLSTM)对比实验,可用于风电、光伏等负荷预测,时序预测,数据为单输入单输出,PSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。

4.命令窗口输出MAE、MAPE、RMSE和R2;

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比
for i=1:PopNum%随机初始化速度,随机初始化位置for j=1:dimif j==dim% % 隐含层节点与训练次数是整数 学习率是浮点型pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsepop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endend
end% calculate the fitness_value of Pop
pbest = pop;
gbest = zeros(1,dim);
data1 = zeros(Maxstep,PopNum,dim);
data2 = zeros(Maxstep,PopNum);
for i = 1:PopNumfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);f_pbest(i) = fit(i);
end
g = min(find(f_pbest == min(f_pbest(1:PopNum))));
gbest = pbest(g,:);
f_gbest = f_pbest(g);%-------- in the loop -------------
for step = 1:Maxstepmbest =sum(pbest(:))/PopNum;% linear weigh factorb = 1-step/Maxstep*0.5;data1(step,:,:) = pop;data2(step,:) = fit;for i = 1:PopNuma = rand(1,dim);u = rand(1,dim);p = a.*pbest(i,:)+(1-a).*gbest;pop(i,:) = p + b*abs(mbest-pop(i,:)).*...log(1./u).*(1-2*(u >= 0.5));% boundary detectionfor j=1:dimif j ==dimif pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %endelsepop(i,j)=round(pop(i,j));if pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);if fit(i) < f_pbest(i)pbest(i,:) = pop(i,:);f_pbest(i) = fit(i);endif f_pbest(i) < f_gbestgbest = pbest(i,:);f_gbest = f_pbest(i);endendtrace(step)=f_gbest;step,f_gbest,gbestresult(step,:)=gbest;
end
or i=1:N%随机初始化速度,随机初始化位置for j=1:Dif j==D% % 隐含层节点与训练次数是整数 学习率是浮点型x(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendv(i,:)=rand(1,D);
end%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:Np(i)=fitness(x(i,:),p_train,t_train,p_test,t_test);y(i,:)=x(i,:);end
[fg,index]=min(p);
pg = x(index,:);             %Pg为全局最优%------进入主要循环,按照公式依次迭代------------for t=1:Mfor i=1:Nv(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));x(i,:)=x(i,:)+v(i,:);for j=1:Dif j ~=Dx(i,j)=round(x(i,j));endif x(i,j)>xmax(j) | x(i,j)<xmin(j)if j==Dx(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendtemp=fitness(x(i,:),p_train,t_train,p_test,t_test);if temp<p(i)p(i)=temp;y(i,:)=x(i,:);endif p(i)<fgpg=y(i,:);fg=p(i);endendtrace(t)=fg;result(t,:)=pg;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++:日期类

学习目标&#xff1a; 加深对四个默认构造函数的理解&#xff1a; 1.构造函数 2.析构函数 3.拷贝构造 4.运算符重载 实现功能 1.比较日期的大小 2.日期-天数 3.前/后置&#xff0c;-- 这里基本会使用运算符重载 定义一个日期类 class Date { public://1.全缺省参数的构造函数Da…

「MySQL-02」数据库的操纵、备份、还原和编码规则

目录 一、库操作 1. 创建数据库 2. 查看所有数据库 3. 删除数据库 4. 修改数据库 5. 进入一个数据库 二、查看和设置数据库的编码规则 1. MySQL的两个编码规则&#xff1a;字符集和校验规则 2. 查看MySQL当前使用的字符集以及校验规则 3. 查看MySQL支持的所有字符集 4. 查看MyS…

three.js(二):webpack + three.js + ts

用webpackts 开发 three.js 项目 webpack 依旧是主流的模块打包工具;ts和three.js 是绝配&#xff0c;three.js本身就是用ts写的&#xff0c;ts可以为three 项目提前做好规则约束&#xff0c;使项目的开发更加顺畅。 1.创建一个目录&#xff0c;初始化 npm mkdir demo cd de…

centos安装nginx实操记录(加安全配置)

1.下载与安装 yum -y install nginx2.启动命令 /usr/sbin/nginx -c /etc/nginx/nginx.conf3.新建配置文件 cd /etc/nginx/conf.d vim index.conf配了一个负责均衡&#xff0c;如不需要&#xff0c;可将 server localhost: 多余的去掉 upstream web_server{server localhost…

MySQL以及版本介绍

一、MySQL的介绍 MySQL数据库管理系统由瑞典的DataKonsultAB公司研发&#xff0c;该公司被Sun公司收购&#xff0c;现在Sun公司又被Oracle公司收购&#xff0c;因此MySQL目前属于 Oracle 旗下产品。 MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语言。MySQL 软件采用…

使用爬虫代码获得深度学习目标检测或者语义分割中的图片。

问题描述&#xff1a;目标检测或者图像分割需要大量的数据&#xff0c;如果手动从网上找的话会比较慢&#xff0c;这时候&#xff0c;我们可以从网上爬虫下来&#xff0c;然后自己筛选即可。 代码如下&#xff08;不要忘记安装代码依赖的库&#xff09;&#xff1a; # -*- co…

《TCP/IP网络编程》阅读笔记--Socket类型及协议设置

目录 1--协议的定义 2--Socket的创建 2-1--协议族&#xff08;Protocol Family&#xff09; 2-2--Socket类型&#xff08;Type&#xff09; 3--Linux下实现TCP Socket 3-1--服务器端 3-2--客户端 3-3--编译运行 4--Windows下实现 TCP Socket 4-1--TCP服务端 4-2--TC…

C++ sizeof求类型大小

注意内存对齐 struct Stu {int id;char sex;float hight; }; cout<<sizeof(Stu)<<endl; 会输出什么&#xff1f; 字节对齐原则:在系统默认的对齐方式下&#xff1a;每个成员相对于这个结构体变量地址的偏移量正好是该成员类型所占字节的整数倍&#xff0c;且最终…

一、了解[mysql]索引底层结构和算法

目录 一、索引1.索引的本质2.mysql的索引结构 二、存储引擎1.MyISAM2.InnoDB3.为什么建议InnoDB表要建立主键并且推荐int类型自增&#xff1f;4.innodb的主键索引和非主键索引&#xff08;二级索引&#xff09;区别5.联合索引 一、索引 1.索引的本质 索引:帮助mysql高效获取数…

C++------vector【STL】

文章目录 vector的介绍及使用vector的介绍vector的使用 vector的模拟实现 vector的介绍及使用 vector的介绍 1、vector是表示可变大小数组的序列容器。 2、就像数组一样&#xff0c;vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问和数…

【前端自动化部署】,Devops,CI/CD

DevOps 提到Jenkins&#xff0c;想到的第一个概念就是 CI/CD 在这之前应该再了解一个概念。 DevOps Development 和 Operations 的组合&#xff0c;是一种方法论&#xff0c;并不特指某种技术或者工具。DevOps 是一种重视 Dev 开发人员和 Ops 运维人员之间沟通、协作的流程。…

第 3 章 栈和队列(单链队列)

1. 背景说明 队列(queue)是一种先进先出(first in first out,缩为 FIFO)的线性表。它只允许在表的一端进行插入&#xff0c;而在另一端删除元素。 2. 示例代码 1&#xff09;status.h /* DataStructure 预定义常量和类型头文件 */#ifndef STATUS_H #define STATUS_H/* 函数结果…

【大数据】Flink 详解(六):源码篇 Ⅰ

Flink 详解&#xff08;六&#xff09;&#xff1a;源码篇 Ⅰ 55、Flink 作业的提交流程&#xff1f;56、Flink 作业提交分为几种方式&#xff1f;57、Flink JobGraph 是在什么时候生成的&#xff1f;58、那在 JobGraph 提交集群之前都经历哪些过程&#xff1f;59、看你提到 Pi…

【个人博客系统网站】统一处理 · 拦截器

【JavaEE】进阶 个人博客系统&#xff08;2&#xff09; 文章目录 【JavaEE】进阶 个人博客系统&#xff08;2&#xff09;1. 统一返回格式处理1.1 统一返回类common.CommonResult1.2 统一返回处理器component.ResponseAdvice 2. 统一异常处理3. 拦截器实现3.1 全局变量SESSI…

Kitchen Hook

双扛厨房排钩&#xff1a;挂刀具

低代码赋能| 绿色智慧矿山解决方案

在世界能源日趋紧张的背景下&#xff0c;能源产业的数字化升级是大势所趋。矿山行业作为国家能源安全的“压舱石”&#xff0c;也必须进行产业升级。一直以来&#xff0c;国家都在大力推动智慧矿山建设。通过大数据、GIS、物联网、云计算、人工智能等新兴技术&#xff0c;实现矿…

Swift 技术 视频播放器滚动条(源码)

一直觉得自己写的不是技术&#xff0c;而是情怀&#xff0c;一个个的教程是自己这一路走来的痕迹。靠专业技能的成功是最具可复制性的&#xff0c;希望我的这条路能让你们少走弯路&#xff0c;希望我能帮你们抹去知识的蒙尘&#xff0c;希望我能帮你们理清知识的脉络&#xff0…

云计算 - 百度AIStudio使用小结

云计算 - 百度AIStudio使用小结 前言 本文以ffmpeg处理视频为例&#xff0c;小结一下AI Studio的使用体验及一些避坑技巧。 算力获得 免费的算力获得方式为&#xff1a;每日登录后运行一个项目&#xff08;只需要点击运行&#xff0c;不需要真正运行&#xff09;即可获得8小…

深入理解 JVM 之——动手编译 JDK

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 本篇为深入理解 Java 虚拟机第一章的实战内容&#xff0c;推荐在学习前先掌握基础的 Linux 操作、编译原理基础以及扎实的 C/C 功底。 该系列的 GitHub 仓库&#xff1a;https://github.com/Doge2077/lear…

Python爬虫网络安全:优劣势和适用范围分析

目录 优势和劣势 优势&#xff1a; 劣势&#xff1a; 适用范围&#xff1a; 1. 网页数据收集和分析&#xff1a; 2. 漏洞扫描和安全评估&#xff1a; 3. 威胁情报收集&#xff1a; 4. 社交媒体监测和情感分析&#xff1a; 注意事项 1. 合规性和法律规定&#xff1a; …