【TCP】三次握手(建立连接)

图片

前言

在网络通信的世界里,可靠传输协议(TCP)扮演着重要的角色,它保证了数据包能够按顺序、完整地从发送端传送到接收端。TCP协议中有一个至关重要的机制——三次握手。这一过程确保了两个TCP设备在开始数据传输之前建立起一个稳定的连接。

握手之前的准备工作 

在TCP协议下,客户端与服务端之间的通信前,两者都需要进行一系列的初始化工作。客户端需要配置自己的IP地址和端口号,同时获知服务器的IP地址和监听端口。服务端则需设置好自己的IP地址和端口号,并启动监听进程,以便响应客户端的连接请求。这些准备工作是后续握手流程顺利进行的基础。

图片

第一次握手:SYN

第一次握手由客户端发起,它向服务端发送一个带有SYN(同步序列编号)标志的数据包,以表示希望建立连接。这个数据包还包含一个随机的序列号X,用于后续的数据同步。此时,客户端进入SYN_SENT状态。

第二次握手:SYN-ACK

服务端收到客户端的SYN包后,会确认客户端的请求,并回送一个带有SYN和ACK(确认)标志的数据包。这个数据包不仅确认收到了客户端的请求,而且包含了服务端的初始序列号Y,同时也携带一个确认号X+1,表示已经准备好接收客户端接下来的数据。此时,服务端进入SYN_RECEIVED状态。

第三次握手:ACK

最后,客户端收到服务端的SYN-ACK包后,会发送一个仅带有ACK标志的数据包作为应答,其中的确认号为Y+1,表明已经准备好接收服务端的数据。当服务端收到这个ACK包后,双方便完成了连接的建立,进入了ESTABLISHED状态,可以开始正式的数据传输。

TCP三次握手的步骤

图片

  1. 客户端发送SYN包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认。

  2. 服务器收到SYN包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态。

  3. 客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。

完成三次握手后,客户端与服务器开始传送数据。为了提供可靠的传送,TCP在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。

以下是一个简单的Java代码示例,使用Socket类模拟TCP三次握手(建立连接)的过程:

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;public class TcpHandshakeDemo {public static void main(String[] args) {// 服务器端try (ServerSocket serverSocket = new ServerSocket(8080)) {System.out.println("服务器端等待客户端连接...");Socket socket = serverSocket.accept(); // 等待客户端连接System.out.println("客户端已连接");} catch (IOException e) {e.printStackTrace();}// 客户端try (Socket socket = new Socket("localhost", 8080)) {System.out.println("客户端已连接到服务器");} catch (IOException e) {e.printStackTrace();}}
}

TCP为什么需要三次握手

TCP需要三次握手的主要原因是防止旧的重复连接引起连接混乱问题,以及同步初始化序列号。在网络状况比较复杂或者网络状况比较差的情况下,发送方可能会连续发送多次建立连接的请求。如果TCP握手的次数只有两次,那么接收方只能选择接受请求或者拒绝接受请求,但它并不清楚这次的请求是正常的请求,还是由于网络环境问题而导致的过期请求,如果是过期请求的话就会造成错误的连接。三次握手可以实现TCP初始化序列号的确认工作,TCP需要初始化一个序列号来保证消息的顺序。如果是两次握手则不能确认序列号是否正常,如果是四次握手的话会浪费系统的资源,因此TCP三次握手是最优的解决方案。

TCP头结构

TCP头结构是TCP数据包的重要组成部分,包含了TCP通信所需的各种信息。TCP头结构包括以下字段:

  • 序号(Sequence Number):用于标识TCP段中的字节流。

  • 确认号(Acknowledgment Number):用于确认收到对方的数据段。

  • 数据偏移(Data Offset):指示数据段中的TCP头长度。

  • 保留(Reserved):保留字段供将来使用。

  • 标志位(Flags):包括URG、ACK、PSH、RST、SYN和FIN等标志。

  • 窗口大小(Window Size):用于流量控制和拥塞控制。

  • 校验和(Checksum):用于检测数据传输过程中的错误。

  • 紧急指针(Urgent Pointer):用于指示紧急数据的位置。

  • TCP选项(TCP Options):可选字段,包括最大段大小、窗口缩放因子等。

图片

SYN的基本原理

SYN的基本原理涉及到TCP协议中的连接建立过程,即三次握手机制。在这个过程中,SYN(同步序列编号)标志位发挥着至关重要的作用。

首先,SYN标志位用于同步序号,在TCP连接建立的第一次握手中,客户端会向服务端发送一个SYN包,该包包含随机生成的序列号X,表明客户端希望开始建立连接。服务端收到后,会确认客户端的SYN(第二次握手),并回送一个SYN-ACK包,其中也包含服务端的初始序列号Y,同时携带一个确认号X+1,表示已经准备好接收客户端接下来的数据。最后,客户端发送ACK包作为应答(第三次握手),其中的确认号为Y+1,表明已经准备好接收服务端的数据。完成这三次握手后,双方便建立了连接,可以开始数据传输。

其次,SYN还与网络安全中的SYN攻击有关。SYN攻击是一种拒绝服务攻击(DoS攻击),攻击者通过发送大量的SYN包来耗尽目标服务器的资源,导致正常的服务请求无法得到响应。为了防止这种攻击,一些系统采用了SYN Cookie技术,即在收到SYN包时,服务器不立即分配资源,而是先发送一个带有特定Cookie值的SYN-ACK包。真实的客户端会回应一个ACK包,其中的确认号是Cookie值加1,这时服务器才会分配资源,从而有效抵御伪造的SYN包攻击。

总的来说,SYN标志位是TCP协议中确保数据同步和连接建立的关键要素,同时也是网络安全防护中需要特别注意的部分。通过理解SYN的工作原理,我们可以更好地把握网络通信的安全性和稳定性。

结语 

TCP三次握手是一个精心设计的机制,它不仅确保了网络连接的稳定性和可靠性,也避免了因过时或重复的连接请求而导致的资源浪费。了解三次握手的原理和TCP头的结构,有助于深入理解网络协议的工作方式,对于网络工程师而言,这是掌握网络通信基础的关键一步。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/659640.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器的大小端存储模式

大、小端字节序 一个整形数据在内存中的存储方式是该数据的补码; 该数据本事的数据是从高地址位到低地址位的,而计算机的内存中刚好相反! 以数字10为例: 补码:0000 0000 0000 0000 0000 0000 0000 1010 补码的十六进制…

Redis简单阐述、安装配置及远程访问

目录 一、Redis简介 1.什么是Redis 2.特点 3.优势 4.数据库对比 5.应用场景 二、 安装与配置 1.下载 2.上传解压 3.安装gcc 4.编译 5.查看安装目录 6.后端启动 7.测试 8.系统服务配置 三、Redis远程访问 1.修改访问IP地址 2.设置登录密码 3.重启Redis服务 …

Maven安装,学习笔记,详细整理maven的一些配置

Maven 1. 初识Maven 2. Maven概述 Maven模型介绍 Maven仓库介绍 Maven安装与配置 3. IDEA集成Maven 4. 依赖管理 01. Maven课程介绍 1.1 课程安排 学习完前端Web开发技术后,我们即将开始学习后端Web开发技术。做为一名Java开发工程师,后端 Web开发技术…

算法练习01——哈希部分双指针

目录 1. 两数之和(*)242. 有效的字母异位词(easy)49. 字母异位词分组(*)349. 两个数组的交集202. 快乐数(1.使用Set存哈希,2.快慢指针)454. 四数相加 II383. 赎金信15. 三数之和*(双指针)18. 四数之和*(双指针)128. 最长连续序列 1. 两数之和(*) https://leetcode.…

Gas Hero Common Heroes NFT 概览与数据分析

作者:stellafootprint.network 编译:mingfootprint.network 数据源:Gas Hero Common Heroes NFT Collection Dashboard Gas Hero “盖世英雄” 是一个交互式的 Web3 策略游戏,强调社交互动,并与 FSL 生态系统集成…

备战蓝桥杯---数据结构与STL应用(入门4)

本专题主要是关于利用优先队列解决贪心选择上的“反悔”问题 话不多说,直接看题: 下面为分析: 很显然,我们在整体上以s[i]为基准,先把士兵按s[i]排好。然后,我们先求s[i]大的开始,即规定选人数…

asp.net 404页面配置、 asp.net MVC 配置404页面、iis 配置404页面,指定404错误页面,设置404错误页面

通过标题的三个问题 1、asp.net 404页面配置、 2、asp.net MVC 配置404页面、 3、iis 配置404页面; 可以看出,这是一篇了不得的问题,并进行全面讲解; 除了围绕以上三个核心问题外,我们也对以下2个核心场景也作出分析…

【从零开始的rust web开发之路 三】orm框架sea-orm入门使用教程

【从零开始的rust web开发之路 三】orm框架sea-orm入门使用教程 文章目录 前言一、引入依赖二、创建数据库连接简单链接连接选项开启日志调试 三、生成实体安装sea-orm-cli创建数据库表使用sea-orm-cli命令生成实体文件代码 四、增删改查实现新增数据主键查找条件查找查找用户名…

2024.1.31日总结

服创大赛的有一个选题是【A16】新苗同学 - 大学新生智能迎新平台,这个对前端的要求挺高的,需要设计游戏化页面,刚刚搜索了一下,感觉难度很大,又要有创意,而且动画效果也要不错,整体页面才会美观…

爬虫学习笔记-Cookie登录古诗文网

1.导包请求 import requests 2.获取古诗文网登录接口 url https://so.gushiwen.cn/user/login.aspxfromhttp%3a%2f%2fso.gushiwen.cn%2fuser%2fcollect.aspx # 请求头 headers {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like …

linux解决访问/下载github连接超时或下载慢的问题

问题 我这里是树莓派从github下载资源出现无法连接,连接超时的问题,如下所示解决方式 修改/etc/hosts文件 例: sudo nano /etc/hosts #添加如下 192.30.255.112 github.com git 185.31.16.184 github.global.ssl.fastly.net这里以树莓派为…

【大厂AI课学习笔记】1.3 人工智能产业发展(4)——泛在的人工智能

人工智能走向泛在。 泛在,就是广泛存在。(下图来自腾讯AI课。) 没办法,被百度抛弃了,想学习,课程打不开,只好投想腾讯的怀抱。 之前考过腾讯云的认证,课程做的还是条理很清晰。 主…

全面掌握Django的web框架Django Rest_Framework(一)

文章目录 Django Rest_Framework1. DRF介绍2.DRF特点3.环境安装与配置(1)DRF需要以下依赖(2)创建django项目 4.序列化器的使用(1)创建序列化器 5. 反序列化器使用 Django Rest_Framework 1. DRF介绍 Djan…

PPT、PDF全文档翻译相关产品调研笔记

主要找一下是否有比较给力的全文档翻译 文章目录 1 百度翻译2 小牛翻译3 腾讯交互翻译4 DeepL5 languagex6 云译科技7 快翻:qtrans8 simplifyai9 officetranslator10 火山引擎翻译-无文档翻译1 百度翻译 地址: https://fanyi.baidu.com/ 配套的比较完善,对于不同行业也有区…

docker安装elasticsearch+kibana

目录 1.安装es 2.安装kibana 3.kibana监控es 1.安装es 拉取镜像 docker pull elasticsearch:7.6.1 创建存放配置文件、数据、插件的各个文件夹 mkdir -p /home/docker/elasticsearch/config mkdir -p /home/docker/elasticsearch/data mkdir -p /home/docker/elasticsearch…

防火墙目标NAT

目录 拓扑需求 目标NAT配置配置配置服务器映射电信(DX)移动(YD) 配置NAT策略配置目的端口转换 新建安全策略 测试 拓扑 需求 分公司设备可以通过总公司的移动链路和电信链路访问到DMZ区的http服务器 目标NAT配置 这里主要配置目标…

FFMPEG 之 DXVA2 硬解

一:FFMPEG 支持的硬解方式有很多: DXVA2、D3D11VA、CUDA、QSV、OPENCL、DRM、VAAPI、VDPAU、VIDEOTOOLBOX、MEDIACODEC。 有的支持 Windows 平台,有的支持 linux 平台,有的支持 apple ios 平台,…

Mybatis 源码系列:领略设计模式在 Mybatis 其中的应用

文章目录 一、Builder模式二、工厂模式三、单例模式四、代理模式五、组合模式六、模板方式模式七、适配器模式八、装饰器模式九、迭代器模式 虽然我们都知道有23种设计模式,但是大多停留在概念层面,真实开发中很少遇到,Mybatis源码中使用了大…

代码随想录算法训练营DAY8 | 字符串(1)

一、LeetCode 344 反转字符串 题目链接&#xff1a; 344.反转字符串https://leetcode.cn/problems/reverse-string/ 思路&#xff1a;双指针法交换。 class Solution {public void reverseString(char[] s) {int n s.length;int left 0, right n-1;while(left < right){c…

单元/集成测试服务

服务概述 单元/集成测试旨在证明被测软件实现其单元/架构设计规范、证明被测软件不包含非预期功能。经纬恒润测试团队拥有丰富的研发经验、严格的流程管控&#xff0c;依据ISO26262/ASPICE等开展符合要求的单元测试/集成测试工作。 在ISO 26262 - part6 部分产品开发&#xff…