2024美赛数学建模B题思路+代码

文章目录

  • 1 赛题思路
  • 2 美赛比赛日期和时间
  • 3 赛题类型
  • 4 美赛常见数模问题
  • 5 建模资料

1 赛题思路

(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog

2 美赛比赛日期和时间

比赛开始时间:北京时间2024年2月2日(周五)6:00

比赛结束时间:北京时间2024年2月6日(周二)9:00

提交截止日期:北京时间2024年2月6日10点(周二)

比赛结果:结果将于2024年5月31日或之前公布。

3 赛题类型

美国大学生数学建模竞赛目前分为两种类型,MCM(Mathematical Contest In Modeling)和 ICM(Interdisciplinary Contest In Modeling),两种类型竞赛采用统一标准进行,竞赛题目出来之后,参数队伍通过美赛官网进行选题,一共分为 6 种题型。

MCM:A:连续型 B:离散型 C:大数据

ICM:D:运筹学/网络科学 E:可持续性 F:政策

在这里插入图片描述

4 美赛常见数模问题

趁现在赛题还没更新,A君给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

  • 分类模型
  • 优化模型
  • 预测模型
  • 评价模型

4.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

4.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

4.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

4.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

5 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/659108.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法刷题训练营day21

代码随想录算法刷题训练营day21:LeetCode(501)二叉搜索树中的众数、LeetCode(530)二叉搜索树的最小绝对差 LeetCode(501)二叉搜索树中的众数 题目 代码 import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map;/*…

【Linux】多线程(线程概念+线程控制)

🌇个人主页:平凡的小苏 📚学习格言:命运给你一个低的起点,是想看你精彩的翻盘,而不是让你自甘堕落,脚下的路虽然难走,但我还能走,比起向阳而生,我更想尝试逆风…

旧物回收小程序:环保与便捷的完美结合

随着社会的发展和人们生活水平的提高,消费行为也日益频繁,这导致了大量的废旧物品的产生。如何有效处理这些废旧物品,既保护环境,又节约资源,成为了一个重要的议题。此时,旧物回收小程序的出现,…

跟着pink老师前端入门教程-day14+15

2.6 main 主体模块制作 HTML&#xff1a; <div class"w"><div class"main"><!-- 焦点图模块 --><div class"focus"><ul><li><img src"./images/banner_bg.png" alt""></li>…

python给word插入脚注

1.需求 最近因为工作需要&#xff0c;需要给大量文本的脚注插入内容&#xff0c;我就写了个小程序。 2.实现 下面程序是我已经给所有脚注插入了两次文本“幸福”&#xff0c;给脚注2到4再插入文本“幸福” from win32com import clientdef add_text_to_specific_footnotes(…

会议会务报名签到互动抽奖视频图片直播公众号开发

会议会务报名签到互动抽奖视频图片直播公众号开发 现在越来越多的人进行网络签到&#xff0c;特别是大型的会务/展会&#xff0c;网络签到进场形式应用的越来越广泛也是发展的趋势&#xff1b;会助力智能会议管理系统&#xff1a;可以实现在线报名&#xff08;免费/付费/后台导…

Linux/ScriptKiddie

Enumeration nmap 第一次扫描发现系统对外开放了22和5000端口&#xff0c;端口详细信息如下 22端口运行着openssh&#xff0c;5000端口则是werkzeug的httpd&#xff0c;tittle是kids hacker tools TCP/5000 首先从5000端口开始&#xff0c;先访问站点&#xff0c;站点是一个…

RHCE 部署Ubuntu系统(ubuntu-23.10-live-server-amd64.iso)

目录 一、新建虚拟机 二、安装系统 1、 选择安装语言&#xff0c;默认 【 English 】&#xff0c;直接回车 2、选择键盘&#xff0c;默认回车 3、安装的服务器版本&#xff0c;根据需求自行选择&#xff0c;本次安装选择 【 Ubuntu Server 】 4、网络设置&#xff0c;此…

Unix/Linux上的五种IO模型

a.阻塞 blocking 调用者调用了某个函数&#xff0c;等待这个函数返回&#xff0c;期间什么也不做&#xff0c;不停的去检查这个函数有没有返回&#xff0c;必须等这个函数返回才能进行下一步动作。 注意&#xff1a;阻塞并不是函数的行为&#xff0c;而是跟文件描述符有关。通…

力扣题目训练(5)

2024年1月29日力扣题目训练 2024年1月29日力扣题目训练345. 反转字符串中的元音字母349. 两个数组的交集350. 两个数组的交集 II96. 不同的二叉搜索树97. 交错字符串44. 通配符匹配 2024年1月29日力扣题目训练 2024年1月29日第五天编程训练&#xff0c;今天主要是进行一些题训…

【云上建站】快速在云上构建个人网站3——网站选型和搭建

快速在云上构建个人网站3——网站选型和搭建 一、网站选型二、云市场镜像方式一&#xff1a;方式二&#xff1a;1. 进入ECS实例详情页面&#xff0c;点击停止&#xff0c;确保更换操作系统的之前ECS实例处于已停止状态&#xff0c;点击更换操作系统&#xff0c;进行镜像配置。2…

appsmith安装手记:4.Sql server数据库容器安装

appsmith安装好&#xff0c;那就可以看是练练手。 数据当然是来自数据库&#xff0c;那就连接局域网中现成的一台数据库服务器试试&#xff0c;但是连接数据库的时候一直错误。 找到/home/appsmith/backend 目录下的日志&#xff0c;看到了错误&#xff1a; [rootlocalhost bac…

基于SSM的高校班级同学录网站设计与实现(有报告)。Javaee项目,ssm项目。

演示视频&#xff1a; 基于SSM的高校班级同学录网站设计与实现&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm项目。 项目介绍&#xff1a; Javaee项目&#xff0c;采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&…

双非本科准备秋招(12.2)—— 力扣栈与队列

复习一下栈和队列的基础知识&#xff0c;刷几道题上上手。 1、102. 二叉树的层序遍历 广度优先遍历嘛&#xff0c;每次拓展一个新结点&#xff0c;就把新结点加入队列&#xff0c;这样遍历完队列中的元素&#xff0c;顺序就是层序遍历。 class Solution {public List<Lis…

我国个体工商户达1.24亿户,支撑近3亿人就业

官媒报道截至2023年底&#xff0c;全国登记在册个体工商户1.24亿户&#xff0c;占经营主体总量的67.4%&#xff0c;支撑近3亿人就业。 什么概念&#xff1f;我帮大家理解一下&#xff0c;2024年了&#xff0c;现在中国5个人里面就有一个人不用上班&#xff0c;而是自己当起了老…

Linux 内核学习1. 编译并启动一个最小化系统

Linux 内核学习1. 编译并启动一个最小化系统 一、Linux内核简介1. Linux 内核介绍2. Linux内核主要的作用 二、编译内核主要的步骤三、编译过程1. 准备环境2. 安装编译工具和依赖项3. 下载源码4. 配置内核配置功能选项命令行配置图形化配置默认配置 5. 编译内核6. 构建轻量化工…

mysql 允许其他ip访问

1.改表法。 可能是你的帐号不允许从远程登陆&#xff0c;只能在localhost。这个时候只要在localhost的那台电脑&#xff0c;登入mysql后&#xff0c;更改 “mysql” 数据库里的 “user” 表里的 “host” 项&#xff0c;从"localhost"改称"%" //执行以下…

学习使用Flask模拟接口进行测试

前言 学习使用一个新工具&#xff0c;首先找一段代码学习一下&#xff0c;基本掌握用法&#xff0c;然后再考虑每一部分是做什么的 Flask的初始化 app Flask(__name__)&#xff1a;初始化&#xff0c;创建一个该类的实例&#xff0c;第一个参数是应用模块或者包的名称 app…

免费使用支持离线部署使用的 txt2video 文本生成视频大模型(Text-to-Video-Synthesis Model)

免费使用支持离线部署使用的 txt2video 文本生成视频大模型(Text-to-Video-Synthesis Model)。 文本生成视频大模型(Text-to-Video-Synthesis Model)是一种基于深度学习技术的人工智能模型&#xff0c;它可以将自然语言文本描述转换为相应的视频。即通过输入文本描述&#xff…

远程连接服务器:Ping通但SSH连接失败的解决办法

写在前面&#xff1a;本博客仅作记录学习之用&#xff0c;部分图片来自网络&#xff0c;如需引用请注明出处&#xff0c;同时如有侵犯您的权益&#xff0c;请联系删除&#xff01; 文章目录 前言常见问题影响SSH的因素本地影响因素防火墙设置网络配置文件 远程主机影响因素放行…