DEAP库文档教程四——操作与算法

本节将将在初始化的基础上,进一步说明操作与算法。

1、Using the Toolbox

toolbox(base.Toolbox())是包含所有进化操作的工具箱,从目标初始化到适应度计算。它允许在每个算法中实现简单的构造。toolbox基本上由两种方法组成,register()和unregister(),这两种函数是用来添加和移除工具的。

2、Using the Tools

需要区别Toolbox和Tools,前者包含后者关系,Tools更加纯粹的指向进化工具,如Initialization、Crossover、Mutation、Selection、Migration等等,具体查看官方教程。

fitnesses = list(map(toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):ind.fitness.values = fittoolbox.register('population', tools.initRepeat,list, toolbox.individual)
pop = toolbox.population(n = 30)
NGEN = 100 #ITERATION NUMBER
CXPB = 0.1 #CROSSOVER RATE
MUPB = 0.1 #MUTATION RATE
for i in range(NGEN):#selectionoffspring = toolbox.select(pop, len(pop)) #select len(pop) individuals from pop#clone the selected individualsoffspring = list(map(toolbox.clone, offspring))#crossoverfor child1, child2 in zip(offspring[::2], offspring[1::2]):if random.random() < CXPB:toolbox.mate(child1, child2)del child1.fitness.valuesdel child2.fitness.values#mutationfor mutant in offspring:if random.random() < MUPB:toolbox.mutate(mutant)del mutant.fitness.values#evaluate the individuals with an invalid fitnessinvalid_ind = [ind for ind in offspring if not ind.fitness.valid]fitness = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitness):ind.fitness.values = fit#the population is entirely replaced by offspringpop[:] = offspring

3、Tool Decoration

工具装饰是一个很强力的特征,它可以帮助你在演化过程中去精确地对算法和操作进行控制。一个装饰是指将函数进行包装,这叫做在真实的函数被调用前后做一些初始化和终止工作。例如,在一个有限的区域内,一种应用装饰符的方法是在变异和交叉的过程中保证个体不会越界。下面的定义就是检查是否有个体越界,装饰符是通过三个函数定义的,为了接收最小值和最大值。当变异或者交叉被调用时,边界将会检查它们的运算结果。

def checkBounds(min, max):def decorator(func):def wrapper(*args, **kargs):offspring = func(*args, **kargs)for child in offspring:for i in xrange(len(child)):if child[i] > max:child[i] = maxelif child[i] < min:child[i] = minreturn offspringreturn wrapperreturn decoratortoolbox.register("mate", tools.cxBlend, alpha=0.2)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=2)toolbox.decorate("mate", checkBounds(MIN, MAX))
toolbox.decorate("mutate", checkBounds(MIN, MAX))

4、Variations

变化允许建立简单的算法,使用预定义好的小模块。为了使用变化,toolbox一定会建立一个包含所需运算符的集合。例如,在最近展示的完整算法案例中,交叉和变异运算在varAnd()中被重新整合。这个函数要求toolbox包含mate()和mutate()函数,这种变化可以用来简化算法,就像下面这样

from deap import algorithmsfor g in range(NGEN):# Select and clone the next generation individualsoffspring = map(toolbox.clone, toolbox.select(pop, len(pop)))# Apply crossover and mutation on the offspringoffspring = algorithms.varAnd(offspring, toolbox, CXPB, MUPB)# Evaluate the individuals with an invalid fitnessinvalid_ind = [ind for ind in offspring if not ind.fitness.valid]fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fit# The population is entirely replaced by the offspringpop[:] = offspring

穿插讲解Variations

Variations变体是算法的较小部分,可以单独用于构建更复杂的算法。

主要包含varAnd、varOr

algorithms.varAnd(population, toolbox, cxpb, mutpb)---函数的参数被写死了

进化算法的一部分,只应用变异部分(交叉和变异)修改后的个体的适应度无效。个体被克隆,因此返回的种群独立于输入种群。

Parameters:
  • population – A list of individuals to vary.
  • toolbox – A Toolbox that contains the evolution operators.
  • cxpb – The probability of mating two individuals.
  • mutpb – The probability of mutating an individual.
Returns:

A list of varied individuals that are independent of their parents.

 这种变异被命名为And,因为它需要在个体上同时应用交叉和突变。注意,这两种算子都不是系统应用的,产生的个体可以根据给定的概率从仅交叉、仅突变、交叉和突变以及繁殖中生成。两种概率都应在[0,1]中。

algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

Parameters:
  • population – A list of individuals to vary.
  • toolbox – A Toolbox that contains the evolution operators.
  • lambda_ – The number of children to produce
  • cxpb – The probability of mating two individuals.
  • mutpb – The probability of mutating an individual.
Returns:

The final population.

变化如下。在每次lambda_迭代中,它从三个操作中选择一个;交叉、突变或繁殖。在交叉的情况下,从亲本群体Pp中随机选择两个个体,使用toolbox.clone()方法克隆这些个体,然后使用toolbox.mate()方法交配。只有第一个孩子被附加到后代群体Po,第二个孩子被丢弃。在突变的情况下,从Pp中随机选择一个个体,然后使用toolbox.mutate()方法对其进行克隆和突变。产生的突变体附加在Po上。在繁殖的情况下,从Pp中随机选择一个个体,克隆并附加到Po中。

这种变异被命名为Or,因为后代永远不会同时来自交叉和突变操作。两种概率之和应为[0,1],再现概率为1-cxpb-mutpb。

5、Algorithms

有许多种可以在algorithm模块中使用的算法,它们十分简单并且可以反映演化算法的基本类型。这些算法使用Toolbox作为定义好的内容。一旦toolbox被设定完成,它们将会去调用这些算法。简单的演化算法需要五个参数,种群、toolbox、交叉率、变异率和种群迭代次数。

举例如下

from deap import algorithmsalgorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=50)

算法库中列举的算法包含:

1、deap.algorithms.eaSimple(population, toolbox, cxpb, mutpb, ngen[, stats, halloffame, verbose])

2、deap.algorithms.eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])

............///具体的内容,可以参考官方文档,不做展开了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一些自己整理的工具实用参数

工具实用参数 sqlmap -u: 指定需要测试的目标URL&#xff08;格式&#xff1a;http://www.example.com/test.php?id1&#xff09; --cookie: 设置需要发送的 HTTP Cookie&#xff0c;例如&#xff1a;--cookie"sid123456;PHPSESSID654321" --threads&#xff1a;…

Shell脚本练习——系统应用相关

显示系统信息 [rootwenzi data]#cat systemInfo.sh #/bin/bash RED"\E[1;31m" GREEN"\E[1;32m" END"\E[0m" echo -e "$GREEN----------------------Host systeminfo--------------------$END" echo -e "HOSTNAME: $REDho…

Glide的使用及源码分析

前言 依赖 implementation com.github.bumptech.glide:glide:4.16.0 github: GitHub - bumptech/glide: An image loading and caching library for Android focused on smooth scrolling 基本使用 //加载url Glide.with(this) .load(url) .placeholder(R.drawable.placehol…

读word模板批量生成制式文件

文章目录 1、Maven依赖2、.docx或.doc格式的word模板准备3、读word模板&#xff0c;批量替换代码域&#xff0c;生成文件&#xff0c;demo4、结果展示 1、Maven依赖 <dependency><groupId>fr.opensagres.xdocreport</groupId><artifactId>fr.opensagre…

nnUNet v2数据准备及格式转换 (二)

如果你曾经使用过nnUNet V1&#xff0c;那你一定明白数据集的命名是有严格要求的&#xff0c;必须按照特定的格式来进行命名才能正常使用。 这一节的学习需要有数据&#xff0c;如果你有自己的数据&#xff0c;可以拿自己的数据来实验&#xff0c;如果没有&#xff0c;可以用十…

两个pdf文件合并为一个怎么操作?分享pdf合并操作步骤

不管是初入职场的小白&#xff0c;还是久经职场的高手&#xff0c;都必须深入了解pdf&#xff0c;特别是关于pdf的各种操作&#xff0c;如编辑、合并、压缩等操作&#xff0c;其中合并是这么多操作里面必需懂的技能之一&#xff0c;但是很多人还是不知道两个pdf文件合并为一个怎…

ChatGPT⼊门到精通(4):ChatGPT 为何⽜逼

⼀、通⽤型AI 在我们原始的幻想⾥&#xff0c;AI是基于对海量数据的学习&#xff0c;锻炼出⼀个⽆所不知⽆所不能的模 型&#xff0c;并借助计算机的优势&#xff08;计算速度、并发可能&#xff09;等碾压⼈类。 但我们⽬前的AI&#xff0c;不管是AlphaGo还是图像识别算法&am…

解决Debian系统通过cifs挂载smb后,中文目录乱码问题

解决Debian系统通过cifs挂载smb后&#xff0c;中文目录乱码问题 //$smb_server/share /mnt/nas_share cifs credentials/root/.smbcredentials,iocharsetutf8 0 0默认通过以上命令挂载smb&#xff0c;但是在查看文件目录时&#xff0c;中文乱码 解决问题方式&#xff1a; de…

MR混合现实汽车维修情景实训教学演示

MR混合现实技术应用于汽车维修课堂中&#xff0c;能够赋予学生更加真实&#xff0c;逼真地学习环境&#xff0c;让学生在情景体验中不断提高自己的专业能力。 MR混合现实汽车维修情景实训教学演示具体体现在&#xff1a; 1. 虚拟维修指导&#xff1a;利用MR技术&#xff0c;可…

企业架构LNMP学习笔记9

nginx配置文件定义php-fpm服务&#xff1a; 编写测试文件&#xff1a; vim /usr/local/nginx/html/index.php 内容&#xff1a; <?phpphpinfo(); 在nginx的配置文件中配置&#xff1a; 修改配置文件&#xff0c;告知nginx如果收到.php结尾的请求&#xff0c;交由给php-…

【数据结构篇】线性表1 --- 顺序表、链表 (万字详解!!)

前言&#xff1a;这篇博客我们重点讲 线性表中的顺序表、链表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列... 线性表在逻辑上是…

mac软件安装后打开软件显示损坏

#mac传输安装包后安装后打开软件显示损坏处理方式 以postman为例&#xff0c;输入前面的代码&#xff0c;打开访达&#xff0c;把有问题的软件拉到命令行窗口&#xff0c;确认即可 sudo xattr -r -d com.apple.quarantine /Applications/Postman.app sudo xattr -r -d com.ap…

如何中mac上安装多版本python并配置PATH

摘要 mac 默认安装的python是 python3&#xff0c;但是如果我们需要其他python版本时&#xff0c;该怎么办呢&#xff1f; 例如&#xff1a;需要python2 版本&#xff0c;如果使用homebrew安装会提示没有python2。同时使用python --version 会发现commond not found。 所以本…

MySQL中表的设计

在MySQL中表的设计&#xff0c;需要一定的经验才能理解&#xff0c;由于笔者目前在读中&#xff0c;理解不是很深刻&#xff0c;仅根据自己的想法外界的一些参考资料做出下述文字描述&#xff0c;一些错误&#xff0c;请大佬及时指正~~ 在本篇文章中&#xff0c;介绍一点简单粗…

RocketMQ(消息中间件)

目录 一、为什么会出现消息中间件&#xff1f; 二、消息中间件是干嘛的&#xff1f; 三、应用解耦 四、流量削峰 五、异步处理 1.串行方式&#xff1a; 2.并行方式&#xff1a; 3.引入消息队列&#xff1a; 六、RocketMQ的架构及概念 一、为什么会出现消息中间件&#…

小程序快速备案助手代备案小程序开发

小程序快速备案助手代备案小程序开发 用户注册与登录&#xff1a;用户可以通过手机号或其他方式进行注册和登录&#xff0c;以便进行备案相关操作。备案信息填写&#xff1a;用户可以填写小程序的备案信息&#xff0c;包括小程序名称、小程序服务类目、域名等。备案材料上传&a…

Python钢筋混凝土结构计算.pdf-混凝土构件计算

计算原理&#xff1a; 代码实现&#xff1a; #钢筋混凝土参数 def c_hrb(): global fcuk,HRB,Ec,fc,ft,ftk,Es,fy,fyp,fyk global a1,epsilon_cu fcukEcfcftftk0.0 HRBEsfyfypfyk0.0 #矩形应力图系数a1&#xff0c;C50以下为1.0 a11.0 #正截面混凝土极限压应变epsilon_cu&#…

使用element-ui中的el-table回显已选中数据时toggleRowSelection报错

最近在写一个后台&#xff0c;需要在表格中多选&#xff0c;然后点击编辑按钮的时候&#xff0c;需要回显已经选中的表单项 <el-table v-loading"loading" :data"discountList" :row-key"(row) > row.id" refmultipleTable selection-cha…

Wireshark流量分析例题

1.题目要求&#xff1a; 1.黑客攻击的第一个受害主机的网卡IP地址 2.黑客对URL的哪一个参数实施了SQL注入 3.第一个受害主机网站数据库的表前缀&#xff08;加上下划线例如abc&#xff09; 4.第一个受害主机网站数据库的名字 看到题目SQL注入&#xff0c;那就首先过滤http…

智能化新十年,“全栈智能”定义行业“Copilot智能助手”

“智能化转型是未来十年中国企业穿越经济周期的利器”&#xff0c;这是联想集团执行副总裁兼中国区总裁刘军在去年联想创新科技大会上做出的判断&#xff0c;而2023年正值第四次工业革命第二个十年的开端&#xff0c;智能化是第四次工业革命的主题。2023年初&#xff0c;基于谷…