HiveSQL题——聚合函数(sum/count/max/min/avg)

目录

一、窗口函数的知识点

1.1 窗户函数的定义

1.2 窗户函数的语法

1.3 窗口函数分类

聚合函数

排序函数

前后函数 

头尾函数

1.4 聚合函数

二、实际案例

2.1 每个用户累积访问次数

0 问题描述

1 数据准备

2 数据分析

3 小结

2.2 各直播间最大的同时在线人数

0 问题描述

1 数据准备

2 数据分析

3 小结

2.3 历史至今每个小时内同时在线人数

0 问题描述

1 数据准备

2 数据分析

3 小结

2.4 某个时间段、每个小时内同时在线人数

0 问题描述

1 数据准备

2 数据分析

3 小结

2.5 学生各学科的成绩

0 问题描述

1 数据准备

2 数据分析

3 小结


一、窗口函数的知识点

1.1 窗户函数的定义

        窗口函数可以拆分为【窗口+函数】。窗口函数官网指路:

LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationicon-default.png?t=N7T8https://cwiki.apache.org/confluence/display/Hive/LanguageManual%20WindowingAndAnalytics

  • 窗口:限定函数的计算范围(窗口函数:针对分组后的数据,从逻辑角度指定计算的范围,并没有从物理上真正的切分,只有group by 是物理分组,真正意义上的分组)
  • 函数:计算逻辑
  •  窗口函数的位置:跟sql里面聚合函数的位置一样,from -> join -> on -> where -> group by->select 后面的普通字段,窗口函数 -> having -> order by  -> lmit 。 窗口函数不能跟聚合函数同时出现。聚合函数包括count、sum、 min、max、avg。
  • sql 执行顺序:from -> join -> on -> where -> group by->select 后面的普通字段,聚合函数-> having -> order by -> limit

1.2 窗户函数的语法

      <窗口函数>window_name  over ( [partition by 字段...]  [order by 字段...]  [窗口子句] )

  • window_name:给窗口指定一个别名。
  • over:用来指定函数执行的窗口范围,如果后面括号中什么都不写,即over() ,意味着窗口包含满足where 条件的所有行,窗口函数基于所有行进行计算。
  • 符号[] 代表:可选项;  | : 代表二选一
  •  partition by 子句: 窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行。分组间互相独立。
  • order by 子句:每个partition内部按照哪些字段进行排序,如果没有partition ,那就直接按照最大的窗口排序,且默认是按照升序(asc)排列。
  • 窗口子句:显示声明范围(不写窗口子句的话,会有默认值)。常用的窗口子句如下:
    rows between unbounded preceding and  unbounded following; -- 上无边界到下无边界(一般用于求 总和)rows between unbounded preceding and current row;  --上无边界到当前记录(累计值)rows between 1 preceding and current row; --从上一行到当前行rows between 1 preceding and 1 following; --从上一行到下一行rows between current row and 1 following; --从当前行到下一行

       ps: over()里面有order by子句,但没有窗口子句时 ,即: <窗口函数> over ( partition by 字段... order by 字段... )此时窗口子句是有默认值的 -->  rows between unbounded preceding and current row (上无边界到当前行)。

      此时窗口函数语法:<窗口函数> over ( partition by 字段... order by 字段... ) 等价于

     <窗口函数> over ( partition by 字段... order by 字段... rows between unbounded preceding and current row)
      需要注意有个特殊情况:当order by 后面跟的某个字段是有重复行的时候, <窗口函数> over ( partition by 字段... order by 字段... )  不写窗口子句的情况下,窗口子句的默认值是:range between unbounded preceding and current row(上无边界到当前相同行的最后一行)。

    因此,遇到order by 后面跟的某个字段出现重复行,且需要计算【上无边界到当前行】,那就需要手动指定窗口子句 rows between unbounded preceding and current row ,偷懒省略窗口子句会出问题~

      ps: 窗口函数的执行顺序是在where之后,所以如果where子句需要用窗口函数作为条件,需要多一层查询,在子查询外面进行。

     【例如】求出登录记录出现间断的用户Id

selectid
from (selectid,login_date,lead(login_date, 1, '9999-12-31')over (partition by id order by login_date) next_login_date--窗口函数 lead(向后取n行)--lead(column1,n,default)over(partition by column2 order by column3) 查询当前行的后边第n行数据,如果没有就为nullfrom (--用户在同一天可能登录多次,需要去重selectid,date_format(`date`, 'yyyy-MM-dd') as login_datefrom user_loggroup by id, date_format(`date`, 'yyyy-MM-dd')) tmp1) tmp2
where  datediff(next_login_date, login_date) >=2
group by id;

1.3 窗口函数分类

      哪些函数可以是窗口函数呢?(放在over关键字前面的)

  • 聚合函数

sum(column) over (partition by .. order by .. 窗口子句);
count(column) over (partition by .. order by .. 窗口子句);
max(column) over  (partition by .. order by .. 窗口子句);
min(column) over (partition by .. order by .. 窗口子句);
avg(column) over (partition by .. order by .. 窗口子句);

     ps : 高级聚合函数

             collect_list 收集并形成list集合,结果不去重;

             collect_set 收集并形成set集合,结果去重; 

      举例:

--每个月的入职人数以及姓名select 
month(replace(hiredate,'/','-')),count(*) as cnt,collect_list(name) as name_list
from employee
group by month(replace(hiredate,'/','-'));/*
输出结果
month  cn  name_list
4	    2	["宋青书","周芷若"]
6	    1	["黄蓉"]
7	    1	["郭靖"]
8	    2	["张无忌","杨过"]
9	    2	["赵敏","小龙女"]
*/
  • 排序函数

--  顺序排序——1、2、3
row_number() over(partition by .. order by .. )--  并列排序,跳过重复序号——1、1、3(横向加)
rank() over(partition by .. order by .. )-- 并列排序,不跳过重复序号——1、1、2(纵向加)
dense_rank()  over(partition by .. order by .. )
  • 前后函数 

-- 取得column列的前n行,如果存在则返回,如果不存在,返回默认值default
lag(column,n,default) over(partition by order by) as lag_test
-- 取得column列的后n行,如果存在则返回,如果不存在,返回默认值default
lead(column,n,default) over(partition by order by) as lead_test
  • 头尾函数

---当前窗口column列的第一个数值,如果有null值,则跳过
first_value(column,true) over (partition by ..order by.. 窗口子句) ---当前窗口column列的第一个数值,如果有null值,不跳过
first_value(column,false) over (partition by ..order by.. 窗口子句)--- 当前窗口column列的最后一个数值,如果有null值,则跳过
last_value(column,true) over (partition by ..order by.. 窗口子句) --- 当前窗口column列的最后一个数值,如果有null值,不跳过
last_value(column,false) over (partition by ..order by.. 窗口子句) 

1.4 聚合函数

       sum() /count() /max() /min() /avg()  函数,一般用于开窗求累积汇总值。

sum(column) over (partition by .. order by .. 窗口子句);
count(column) over (partition by .. order by .. 窗口子句);
max(column) over  (partition by .. order by .. 窗口子句);
min(column) over (partition by .. order by .. 窗口子句);
avg(column) over (partition by .. order by .. 窗口子句);

二、实际案例

2.1 每个用户累积访问次数

0 问题描述

    统计每个用户累积访问次数

1 数据准备

create table if not exists table6
(userid         string comment '用户id',visitdate      string comment '访问时间',visitcount     int comment '访问次数'
)comment '用户访问次数';

2 数据分析

selectuserid,visit_date,vc1,--再求出用户历史至今的累积访问次数sum(vc1) over (partition by userid order by visit_date ) as vc2
from (   --先求出用户每个月的累积访问次数selectuserid,date_format(visitdate, 'yyyy-MM') as visit_date,sum(visitcount)  as vc1from table6group by userid, date_format(visitdate, 'yyyy-MM')) tmp1;

3 小结

2.2 各直播间最大的同时在线人数

0 问题描述

   根据直播间的用户访问记录,统计各直播间最大的同时在线人数。

1 数据准备

create table if not exists table7
(room_id      int comment '直播间id',user_id      int comment '用户id',login_time   string comment '用户进入直播间时间',logout_time  string comment '用户离开直播间时间'
)comment '直播间的用户访问记录';
INSERT overwrite table table7
VALUES (1,100,'2021-12-01 19:00:00', '2021-12-01 19:28:00'),(1,100,'2021-12-01 19:30:00', '2021-12-01 19:53:00'),(2,100,'2021-12-01 21:01:00', '2021-12-01 22:00:00'),(1,101,'2021-12-01 19:05:00', '2021-12-01 20:55:00'),(2,101,'2021-12-01 21:05:00', '2021-12-01 21:58:00'),(1,102,'2021-12-01 19:10:00', '2021-12-01 19:25:00'),(2,102,'2021-12-01 19:55:00', '2021-12-01 21:00:00'),(3,102,'2021-12-01 21:05:00', '2021-12-01 22:05:00'),(1,104,'2021-12-01 19:00:00', '2021-12-01 20:59:00'),(2,104,'2021-12-01 21:57:00', '2021-12-01 22:56:00'),(2,105,'2021-12-01 19:10:00', '2021-12-01 19:18:00'),(3,106,'2021-12-01 19:01:00', '2021-12-01 21:10:00');

2 数据分析

selectroom_id,max(num)
from (selectroom_id,sum(flag) over (partition by room_id order by dt) as numfrom (selectroom_id,user_id,login_time as dt,--对登入该直播间的人,标记 11          as flagfrom table7unionselectroom_id,user_id,logout_time as dt,--对退出该直播间的人,标记 -1-1          as flagfrom table7) tmp1) tmp2
--求出直播间最大的同时在线人数
group by room_id;

3 小结

    该题的关键点在于:对每个用户进入/退出直播间的行为进行打标签,再利用sum()over聚合函数计算最终的数值。

2.3 历史至今每个小时内同时在线人数

       由案例2.2 引申出来的案例 2.3和 案例2.4

0 问题描述

    根据直播间用户访问记录,不限制时间段,统计历史至今的各直播间​​​每个小时内的同时在线人数

1 数据准备

create table if not exists table7
(room_id      int comment '直播间id',user_id      int comment '用户id',login_time   string comment '用户进入直播间时间',logout_time  string comment '用户离开直播间时间'
)comment '直播间的用户访问记录';
INSERT overwrite table table7
VALUES (1,100,'2021-12-01 19:00:00', '2021-12-01 19:28:00'),(1,100,'2021-12-01 19:30:00', '2021-12-01 19:53:00'),(2,100,'2021-12-01 21:01:00', '2021-12-01 22:00:00'),(1,101,'2021-12-01 19:05:00', '2021-12-01 20:55:00'),(2,101,'2021-12-01 21:05:00', '2021-12-01 21:58:00'),(1,102,'2021-12-01 19:10:00', '2021-12-01 19:25:00'),(2,102,'2021-12-01 19:55:00', '2021-12-01 21:00:00'),(3,102,'2021-12-01 21:05:00', '2021-12-01 22:05:00'),(1,104,'2021-12-01 19:00:00', '2021-12-01 20:59:00'),(2,104,'2021-12-01 21:57:00', '2021-12-01 22:56:00'),(2,105,'2021-12-01 19:10:00', '2021-12-01 19:18:00'),(3,106,'2021-12-01 19:01:00', '2021-12-01 21:10:00');

2 数据分析

   完整代码如下:

with temp_data as (selectroom_id,user_id,login_time,logout_time,hour(login_time) as min_time,--  hour('2021-12-01 19:30:00') = 19hour(logout_time) as max_time,length(space(hour(logout_time) - hour(login_time))) as lg,split(space(hour(logout_time) - hour(login_time)), '') as disfrom table7
)selectroom_id,on_time,count(1) as cnt
from (select distinctroom_id,user_id,min_time,max_time,dis,dis_index,(min_time + dis_index) as on_timefrom temp_data lateral view posexplode(dis) n as dis_index,dis_dataorder by user_id,min_time,max_time,dis,dis_index) tmp1
group by room_id, on_time
order by room_id, on_time;

     代码拆解分析:

--以一条数据为例,room_id  user_id     login_time               logout_time1         100    '2021-12-01 19:00:00'     '2021-12-01 21:28:00'
(1)上述数据取时间hour(login_time) as min_time 、hour(logout_time)as max_time1(room_id),100(user_id),19(min_time),21(max_time)
(2)split(space(hour(logout_time) - hour(login_time)), '') 的结果:根据[21-19]=2,利用space函数生成长度是2的空格字符串,再用split拆分1(room_id),100(user_id),19(min_time),21(max_time),['','','']
(3)用posexplode经过转换增加行(列转行,炸裂),通过下角标index来获取 on_time时间,根据数组['','',''],得到index的取值是0,1,2炸裂得出下面三行数据(一行变三行)1(room_id),100(user_id),19(min_time),19 = 19+0 (on_time = min_time+index)1(room_id),100(user_id),19(min_time),20 = 19+1 (on_time = min_time+index)1(room_id),100(user_id),19(min_time),21 = 19+2 (on_time = min_time+index)炸裂的目的:将用户在线的时间段[19-21] 拆分成具体的小时,19,20,21;
(4)根据room_id,on_time进行分组,求出每个直播间分时段的在线人数 

3 小结

    上述代码中用到的函数有:

一、空格字符串函数:space
语法:space(int n)
返回值:string
说明:返回值是n的空格字符串
select length (space(10)) --> 10二、split函数(分割字符串)
语法:split(string str,string pat)
返回值:array
说明:按照pat字符串分割str,会返回分割后的字符串数组
例如: select split ('abcdf','c') from test; -> ["ab","df"]三、炸裂函数explode 语法:lateral view explode(split(a,',')) tmp  as new_column返回值:string说明:按照分隔符切割字符串,并将数组中内容炸裂成多行字符串举例:select student_score from test lateral view explode(split(student_score,',')) tmp as student_scoreposexplode语法:lateral view posexploed(split(a,',')) tmp as pos,item 返回值:string说明:按照分隔符切割字符串,并将数组中内容炸裂成多行字符串(炸裂具备瞎下角标 0,1,2,3)举例:select student_name, student_score from testlateral view posexplode(split(student_name,',')) tmp1 as student_name_index,student_namelateral view posexplode(split(student_score,',')) tmp2 as student_score_index,student_scorewhere student_score_index = student_name_index

2.4 某个时间段、每个小时内同时在线人数

0 问题描述

    根据直播间用户访问记录,统计某个时间段的各直播间​​​每个小时内的同时在线人数,假设时间段是['2021-12-01 19:00:00', '2021-12-01 23:00:00']

1 数据准备

​create table if not exists table7
(room_id      int comment '直播间id',user_id      int comment '用户id',login_time   string comment '用户进入直播间时间',logout_time  string comment '用户离开直播间时间'
)comment '直播间的用户访问记录';
INSERT overwrite table table7
VALUES (1,100,'2021-12-01 19:00:00', '2021-12-01 19:28:00'),(1,100,'2021-12-01 19:30:00', '2021-12-01 19:53:00'),(2,100,'2021-12-01 21:01:00', '2021-12-01 22:00:00'),(1,101,'2021-12-01 19:05:00', '2021-12-01 20:55:00'),(2,101,'2021-12-01 21:05:00', '2021-12-01 21:58:00'),(1,102,'2021-12-01 19:10:00', '2021-12-01 19:25:00'),(2,102,'2021-12-01 19:55:00', '2021-12-01 21:00:00'),(3,102,'2021-12-01 21:05:00', '2021-12-01 22:05:00'),(1,104,'2021-12-01 19:00:00', '2021-12-01 20:59:00'),(2,104,'2021-12-01 21:57:00', '2021-12-01 22:56:00'),(2,105,'2021-12-01 19:10:00', '2021-12-01 19:18:00'),(3,106,'2021-12-01 19:01:00', '2021-12-01 21:10:00');​

2 数据分析

   完整代码如下:

with temp_data1 as (selectroom_id,user_id,login_time,logout_time,hour(login_time) as min_time,hour(logout_time)  as max_time,split(space(hour(logout_time) - hour(login_time)), '') as disfrom table7where login_time >= '2021-12-01 19:00:00'and login_time <= '2021-12-01 21:00:00'
)selectroom_id,on_time,count(1) as cnt
from (select distinctroom_id,user_id,min_time,max_time,dis_index,(min_time + dis_index) as on_timefrom temp_data1 lateral view posexplode(dis) n1 as dis_index, dis_dataorder by user_id,min_time,max_time,dis_index) tmp
group by room_id, on_time
order by room_id, on_time;

3 小结

    解题思路与2.3一致,只需要限制下时间区间

2.5 学生各学科的成绩

0 问题描述

    基于不同的窗口限定范围,统计各学生的学科成绩。

1 数据准备

create table if not exists table9
(name    string comment '学生名称',subject string comment '学科',score   int comment '分数'
)comment '学生分数';
INSERT overwrite table table9
VALUES ('a','数学',12),('b','数学',19),('c','数学',17),('d','数学',24),('a','英语',77),('c','英语',11),('d','英语',34),('a','语文',61);

2 数据分析

selectname,subject,score,--1.全局聚合sum(score) over () as sum1,--2.根据学科分组,组内全局聚合sum(score) over (partition by subject) as sum2,--3.根据学科分组,根据分数排序,计算由起点到当前行的累积值sum(score) over (partition by subject order by score)  as sum3,--4.根据学科分组,根据分数排序,计算由起点到当前行的累积值 (sum3跟sum4的结果是一样的)sum(score) over (partition by subject order by score rows between unbounded preceding and current row ) as sum4,--5.根据学科分组,根据分数排序,计算上一行到当前行的累积值sum(score) over (partition by subject order by score rows between 1 preceding and current row ) as sum5,--6.根据学科分组,根据分数排序,计算上一行到下一行的累积值sum(score) over (partition by subject order by score rows between 1 preceding and 1 following)  as sum6,--7.根据学科分组,根据分数排序,计算当前行到后面所有行的累积值sum(score) over (partition by subject order by score rows between current row and unbounded following ) as sum7
from table9;

3 小结

  窗口函数 = 窗口+ 函数,解题时需要梳理清楚函数的计算范围。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/656615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Selenium 隐藏浏览器指纹特征的几种方式

我们使用 Selenium 对网页进行爬虫时&#xff0c;如果不做任何处理直接进行爬取&#xff0c;会导致很多特征是暴露的 对一些做了反爬的网站&#xff0c;做了特征检测&#xff0c;用来阻止一些恶意爬虫 本篇文章将介绍几种常用的隐藏浏览器指纹特征的方式 1. 直接爬取 目标对…

CHS_04.2.3.3+互斥锁

CHS_04.2.3.3互斥锁 进程互斥&#xff1a;锁 接下来 用于实现互斥的一种方法 你可以简单理解为 锁就是一个bool的变量 进程互斥&#xff1a;锁 只有true和false或者零和一两种状态分别表示当前已上锁或者没有上锁 有这样的两个函数可以操作锁acquire 这个函数就是上锁获得 锁…

linux -- 中断管理 -- softirq机制

softirq的起始 do_IRQ();--> irq_enter(); //HARDIRQ部分的开始 更新系统中的一些统计量 标识出HARDIRQ上下文--> generic_irq_handler(); --> irq_exit(); //softirq部分的起始irq_exit /** Exit an interrupt context. Process softirqs if needed and possibl…

知识蒸馏(paper翻译)

paper&#xff1a;Distilling the Knowledge in a Neural Network 摘要&#xff1a; 提高几乎所有机器学习算法性能的一个非常简单的方法是在相同的数据上训练许多不同的模型&#xff0c;然后对它们的预测进行平均[3]。 不幸的是&#xff0c;使用整个模型集合进行预测非常麻烦…

操作系统A-第四和五章(存储器)作业解析

目录 1、在请求分页系统中&#xff0c;某用户程序的逻辑地址空间为 16 页&#xff0c;每页 1KB&#xff0c;分配的内存空间为 8KB。假定某时刻该用户的页表如下表所示。 试问&#xff1a;(1)逻辑地址 184BH 对应的物理地址是多少&#xff1f;&#xff08;用十六进制表示&…

基于SSM的二手车交易网站设计与实现(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的二手车交易网站设计与实现&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过…

全国网络安全行业职业技能大赛WP

word_sercet 文档被加密 查看图片的属性 在备注可以看到解压密码 解密成功 在选项里面把隐藏的文本显示出来 可以看到ffag easy_encode 得到一个bmp二维码 使用qr research 得到的密文直接放瑞士军刀 base32解码base64解码hex解码 dir_pcap 直接搜索flag 发现flag…

mysql之基本查询

基本查询 一、SELECT 查询语句 一、SELECT 查询语句 查询所有列 1 SELECT *FORM emp;查询指定字段 SELECT empno,ename,job FROM emp;给字段取别名 SELECT empno 员工编号 FROM emp; SELECT empno 员工编号,ename 姓名,job 岗位 FROM emp; SELECT empno AS 员工编号,ename …

Codeforces Round 799 (Div. 4)

目录 A. Marathon B. All Distinct C. Where’s the Bishop? D. The Clock E. Binary Deque F. 3SUM G. 2^Sort H. Gambling A. Marathon 直接模拟 void solve() {int ans0;for(int i1;i<4;i) {cin>>a[i];if(i>1&&a[i]>a[1]) ans;}cout<&l…

离线生成双语字幕,一键生成中英双语字幕,基于AI大模型,ModelScope

离线生成双语字幕整合包,一键生成中英双语字幕,基于AI大模型 制作双语字幕的方案网上有很多&#xff0c;林林总总&#xff0c;不一而足。制作双语字幕的原理也极其简单&#xff0c;无非就是人声背景音分离、语音转文字、文字翻译&#xff0c;最后就是字幕文件的合并&#xff0c…

鸿蒙南向开发——GN快速入门指南

运行GN(Generate Ninja) 运行gn&#xff0c;你只需从命令行运行gn&#xff0c;对于大型项目&#xff0c;GN是与源码一起的。 对于Chromium和基于Chromium的项目&#xff0c;有一个在depot_tools中的脚本&#xff0c;它需要加入到你的PATH环境变量中。该脚本将在包含当前目录的…

常用芯片学习——CD4094芯片

CD4094 8位移位寄存器/3态输出缓冲器 使用说明 CD4094是由一个 8 位串行移位寄存器和一个 3 态输出缓冲器组成的 CMOS 集成电路。寄存器带有存储锁存功能&#xff0c;集成电路根据 STROBE 信号确定锁存器是否接收移位寄存器各位数据&#xff0c;数据是否由锁存器传输到 3 态输…

【教学类-35-23】20240130“红豆空心黑体”不能显示的汉字

作品展示&#xff1a; 背景需求 使用红豆空心黑体制作幼儿字帖&#xff08;涂色版&#xff09; 【教学类-35-22】正式版 20240129名字字卡3.0&#xff08;15CM正方形手工纸、先男后女&#xff0c;页眉是黑体包含全名&#xff0c;名字是红豆空心黑体&#xff09;-CSDN博客文章…

线性代数---------学习总结

线性代数之行列式 行列式的几条重要的性质 1.某两行某两列交换位置之后&#xff0c;值变号 2.行列式转置&#xff0c;值不变 3.范德蒙德行列式&#xff0c;用不同行的公比做一系列的累乘运算 4.把某一行的行列式加到另一行上&#xff0c;利用他们之间的倍数关系&#xff0…

Could not resolve host: github.com问题解决

git clone的时候发现机器无法解析github.com&#xff0c;其实应该改用ssh协议去clone&#xff0c;但是我用的是公用的机器&#xff0c;密钥对一直没配置好&#xff0c;所以也就堵死了。那么如果想让机器能解析github.com&#xff0c;&#xff08;机器本身没有ping命令&#xff…

Python XPath解析html出现⋆解决方法 html出现#123;解决方法

前言 爬网页又遇到一个坑&#xff0c;老是出现乱码&#xff0c;查看html出现的是&#数字;这样的。 网上相关的“Python字符中出现&#的解决办法”又没有很好的解决&#xff0c;自己继续冲浪&#xff0c;费了一番功夫解决了。 这算是又加深了一下我对这些iso、Unicode编…

MySQL原理(二)存储引擎(3)InnoDB

目录 一、概况&#xff1a; 1、介绍&#xff1a; 2、特点&#xff1a; 二、体系架构 1、后台线程 2、内存池&#xff08;缓冲池&#xff09; 三、物理结构 1、数据文件&#xff08;表数据和索引数据&#xff09; 1.1、作用&#xff1a; 1.2、共享表空间与独立表空间 …

计算机网络——静态路由的配置实验

1.实验题目 实验四&#xff1a;静态路由的配置 2.实验目的 1.了解路由器的基本配置。 2.实现对路由器的静态配置。 3.了解Ping命令和trace的原理和使用 3.实验任务 &#xff08;1&#xff09;路由器的基本配置&#xff1a;关闭域名解释&#xff1b;设置路由器接口 IP 地…

网络地址相关函数一网打尽

这块的函数又多又乱&#xff0c;今天写篇日志&#xff0c;以后慢慢补充 1. 网络地址介绍 1.1 ipv4 1.1.1 点、分十进制的ipv4 你对这个地址熟悉吗&#xff1f; 192.168.10.100&#xff0c;这可以当做一个字符串。被十进制数字、 “ . ”分开。IP地址的知识就不再多讲…

一文速学-selenium高阶操作连接已存在浏览器

前言 不得不说selenium不仅在自动化测试作为不可或缺的工具&#xff0c;在数据获取方面也是十分好用&#xff0c;能够十分快速的见到效果&#xff0c;这都取决于selenium框架的足够的灵活性&#xff0c;甚至在一些基于web端的自动化办公都十分有效。 通过selenium连接已经存在…