深度强化学习(王树森)笔记09

深度强化学习(DRL)

本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。

参考链接

Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL

源代码链接:https://github.com/DeepRLChinese/DeepRL-Chinese

B站视频:【王树森】深度强化学习(DRL)

豆瓣: 深度强化学习

文章目录

  • 深度强化学习(DRL)
  • 带基线的策略梯度方法
    • 策略梯度中的基线
      • 基线 (Baseline)
      • 基线的直观解释
    • 带基线的 REINFORCE 算法
      • 策略网络和价值网络
      • 算法的推导
      • 训练流程
    • Advantage Actor-Critic (A2C)
      • 算法推导
      • 训练流程
      • 用目标网络改进训练
    • 总结
  • 后记

带baseline的策略梯度方法:REINFORCE with baseline和advantage actor-critic (A2C)

带基线的策略梯度方法

上一章推导出策略梯度,并介绍了两种策略梯度方法——REINFORCE 和 actor-critic。
虽然上一章的方法在理论上是正确的,但是在实践中效果并不理想。本章介绍的带基线的策略梯度 (policy gradient with baseline) 可以大幅提升策略梯度方法的表现。使用基线(baseline) 之后,REINFORCE 变成 REINFORCE with baseline, actor-critic 变成 advantage actor-critic (A2C)。

策略梯度中的基线

首先回顾上一章的内容。策略学习通过最大化目标函数 J ( θ ) = E S [ V π ( S ) ] J(\theta)=\mathbb{E}_S[V_\pi(S)] J(θ)=ES[Vπ(S)], 训练出策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ)。可以用策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 来更新参数 θ \theta θ:

θ n e w ← θ n o w + β ⋅ ∇ θ J ( θ n o w ) . \theta_{\mathrm{new}}\:\leftarrow\:\theta_{\mathrm{now}}+\beta\cdot\nabla_{\theta}\:J(\boldsymbol{\theta_{now}}). θnewθnow+βθJ(θnow).

策略梯度定理证明:

∇ θ J ( θ ) = E S [ E A ∼ π ( ⋅ ∣ S , θ ) [ Q π ( S , A ) ⋅ ∇ θ ln ⁡ π ( A ∣ S ; θ ) ] ] . ( 8.1 ) \boxed{\quad\nabla_\theta J(\boldsymbol{\theta})~=~\mathbb{E}_S\biggl[\mathbb{E}_{A\sim\pi(\cdot|S,\boldsymbol{\theta})}\biggl[\:Q_\pi(S,A)~\cdot~\nabla_\theta\:\ln\pi(A\mid S;\boldsymbol{\theta})\biggr]\biggr].} \quad{(8.1)} θJ(θ) = ES[EAπ(S,θ)[Qπ(S,A)  θlnπ(AS;θ)]].(8.1)
上一章中,我们对策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 做近似,推导出 REINFORCE 和 actor-critic; 两种方法区别在于具体如何做近似。

基线 (Baseline)

基于策略梯度公式 (8.1) 得出的 REINFORCE 和 actor-critic 方法效果通常不好。只需对策略梯度公式 (8.1) 做一个微小的改动,就能大幅提升表现:把 b b b 作为动作价值函数 Q π ( S , A ) Q_{\pi}(S,A) Qπ(S,A) 的基线 (baseline), 用 Q π ( S , A ) − b Q_{\pi}(S,A)-b Qπ(S,A)b 替换掉 Q π Q_{\pi} Qπ。设 b b b 是任意的函数,只要不依赖于动作 A A A 就可以,例如 b b b 可以是状态价值函数 V π ( S ) V_\pi(S) Vπ(S)

定理 8.1. 带基线的策略梯度定理

b b b 是任意的函数,但是 b b b 不能依赖于 A A A。把 b b b 作为动作价值函数 Q π ( S , A ) Q_\pi(S,A) Qπ(S,A) 的基线,对策略梯度没有影响:
∇ θ J ( θ ) = E S [ E A ∼ π ( ⋅ ∣ S ; θ ) [ ( Q π ( S , A ) − b ) ⋅ ∇ θ ln ⁡ π ( A ∣ S ; θ ) ] ] \nabla_{\theta}\:J(\boldsymbol{\theta})\:=\:\mathbb{E}_{S}\bigg[\mathbb{E}_{A\sim\pi(\cdot|S;\boldsymbol{\theta})}\bigg[\bigg(\:Q_{\pi}(S,A)\:-\:{b}\bigg)\:\cdot\:\nabla_{\boldsymbol{\theta}}\:\ln\pi(A|S;\boldsymbol{\theta})\bigg]\bigg]\bigg. θJ(θ)=ES[EAπ(S;θ)[(Qπ(S,A)b)θlnπ(AS;θ)]]

在这里插入图片描述

定理 8.1 说明 b b b 的取值不影响策略梯度的正确性。不论是让 b = 0 b=0 b=0 还是让 b = V π ( S ) b=V_\pi(S) b=Vπ(S) , 对期望的结果毫无影响,期望的结果都会等于 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ)。其原因在于
E S [ E A ∼ π ( ⋅ ∣ S ; θ ) [ b ⋅ ∇ θ ln ⁡ π ( A ∣ S ; θ ) ] ] = 0. \mathbb{E}_{S}\Big[\mathbb{E}_{A\sim\pi(\cdot|S;\boldsymbol{\theta})}\Big[b\:\cdot\:\nabla_{\boldsymbol{\theta}}\:\ln\pi\big(A|S;\:\boldsymbol{\theta}\big)\Big]\Big]\:=\:0. ES[EAπ(S;θ)[bθlnπ(AS;θ)]]=0.

定理中的策略梯度表示成了期望的形式,我们对期望做蒙特卡洛近似。从环境中观测到一个状态 s s s,然后根据策略网络抽样得到 a ∼ π ( ⋅ ∣ s ; θ ) a\sim\pi(\cdot|s;\boldsymbol{\theta}) aπ(s;θ)。那么策略梯度 ∇ θ J ( θ ) \nabla_\theta J(\theta) θJ(θ) 可以近似为下面的随机梯度:

g b ( s , a ; θ ) = [ Q π ( s , a ) − b ] ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) . \boxed{\quad\boldsymbol{g}_b(s,a;\boldsymbol{\theta})=\left[Q_\pi(s,a)-b\right]\cdot\nabla_\theta\ln\pi(a|s;\boldsymbol{\theta}).} gb(s,a;θ)=[Qπ(s,a)b]θlnπ(as;θ).

不论 b b b 的取值是 0 还是 V π ( s ) V_\pi(s) Vπ(s), 得到的随机梯度 g b ( s , a ; θ ) g_b(s,a;\boldsymbol{\theta}) gb(s,a;θ) 都是 ∇ θ J ( θ ) \nabla_{\boldsymbol{\theta}}J(\boldsymbol{\theta}) θJ(θ) 的无偏估计:

Bias = E S , A [ g b ( S , A ; θ ) ] − ∇ θ J ( θ ) = 0. \begin{array}{rcl}{\text{Bias}}&{=}&{\mathbb{E}_{S,A}\left[\boldsymbol{g}_{b}(S,A;\boldsymbol{\theta})\right]\:-\:\nabla_{\theta}J(\boldsymbol{\theta})\:=\:\mathbf{0}.}\\\end{array} Bias=ES,A[gb(S,A;θ)]θJ(θ)=0.

虽然 b b b 的取值对 E S , A [ g b ( S , A ; θ ) ] \mathbb{E}_{S,A}[\boldsymbol{g}_b(S,A;\boldsymbol{\theta})] ES,A[gb(S,A;θ)] 毫无影响,但是 b b b 对随机梯度 g b ( s , a ; θ ) g_b(s,a;\theta) gb(s,a;θ) 是有影响的。用不同的 b b b, 得到的方差

Var = E S , A [ ∥ g b ( S , A ; θ ) − ∇ θ J ( θ ) ∥ 2 ] \text{Var}\:=\:\mathbb{E}_{S,A}\left[\left\|g_{b}(S,A;\:\theta)\:-\:\nabla_{\theta}J(\boldsymbol{\theta})\right\|^{2}\right] Var=ES,A[gb(S,A;θ)θJ(θ)2]

会有所不同。如果 b b b 很接近 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a) 关于 a a a 的均值,那么方差会比较小。因此, b = V π ( s ) b=V_\pi(s) b=Vπ(s) 是很好的基线。

基线的直观解释

策略梯度公式 (8.1) 期望中的 Q π ( S , A ) ⋅ ∇ θ ln ⁡ π ( A ∣ S ; θ ) Q_\pi(S,A)\cdot\nabla_\theta\ln\pi(A|S;\boldsymbol{\theta}) Qπ(S,A)θlnπ(AS;θ) 的意义是什么呢?以图 8.1中的左图为例。

在这里插入图片描述

给定状态 s t s_t st, 动作空间是 A = { 左,右,上 } A= \{ 左,右,上\} A={左,右,上}, 动作价值函数给每个动作打分:
Q π ( s t , 左 ) = 80 , Q π ( s t , 右 ) = − 20 , Q π ( s t , 上 ) = 180 , Q_{\pi}(s_{t},\text{左})\:=\:80,\quad Q_{\pi}(s_{t},\text{右})\:=\:-20,\quad Q_{\pi}(s_{t},\text{上})\:=\:180, Qπ(st,)=80,Qπ(st,)=20,Qπ(st,)=180,

这些分值会乘到梯度 ∇ θ ln ⁡ π ( A ∣ S ; θ ) \nabla_{\boldsymbol{\theta}}\ln\pi(A|S;\boldsymbol{\theta}) θlnπ(AS;θ) 上。在做完梯度上升之后,新的策略会倾向于分值高的动作。

  • 动作价值 Q π ( s t , 上 ) = 180 Q_\pi(s_t,上)=180 Qπ(st,)=180 很大,说明基于状态 s t s_t st 选择动作“上”是很好的决策。让梯度 ∇ θ ln ⁡ π ( 上 ∣ s t ; θ ) \nabla_{\theta}\ln\pi(上|s_t;\theta) θlnπ(st;θ) 乘以大的系数 Q π ( s t , 上 ) = 180 Q_{\pi}(s_{t}, 上)=180 Qπ(st,)=180, 那么做梯度上升更新 θ \theta θ 之后,会让 π ( 上 ∣ s t ; θ ) \pi(上|s_t;\theta) π(st;θ) 变大,在状态 s t s_t st 的情况下更倾向于动作“上”。

  • 相反, Q π ( s t , 右 ) = − 20 Q_\pi( s_t, 右) = - 20 Qπ(st,)=20 说明基于状态 s t s_t st 选择动作“右”是糟糕的决策。让梯度 ∇ θ ln ⁡ π ( 右 ∣ s t ; θ ) \nabla_{\boldsymbol{\theta}}\ln \pi(右|s_t; \boldsymbol\theta) θlnπ(st;θ) 乘以负的系数 Q π ( s t , 右 ) = − 20 Q_\pi( s_t, 右) = - 20 Qπ(st,)=20,那么做梯度上升更新 θ \theta θ 之后, 会让 π ( 右 ∣ s t ; θ ) \pi(右|s_t; \boldsymbol\theta) π(st;θ) 变小,在状态 s t s_t st的情况下选择动作“右”的概率更小。

根据上述分析,我们在乎的是动作价值 Q π ( s t , 左 ) Q_\pi( s_t, 左) Qπ(st,) Q π ( s t , 右 ) Q_\pi( s_t, 右) Qπ(st,) Q π ( s t , 上 ) Q_\pi(s_t,上) Qπ(st,) 三者的相对大小,而非绝对大小。如果给三者都减去 b = 60 b=60 b=60,那么三者的相对大小是不变的;动作“上”仍然是最好的,动作“右”仍然是最差的。见图 8.1 中的右图。因此

[ Q π ( s t , a t ) − b ] ⋅ ∇ θ ln ⁡ π ( A ∣ S ; θ ) \begin{bmatrix}Q_\pi(s_t,a_t)-b\end{bmatrix}\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(A\:|\:S;\:\boldsymbol{\theta}) [Qπ(st,at)b]θlnπ(AS;θ)

依然能指导 θ \theta θ做调整,使得 π ( 上 ∣ s t ; θ ) \pi(上|s_t;\theta) π(st;θ)变大,而 π ( 右 ∣ s t ; θ ) \pi(右|s_t;\theta) π(st;θ)变小。

带基线的 REINFORCE 算法

上一节推导出了带基线的策略梯度,并且对策略梯度做了蒙特卡洛近似。本节中,我们使用状态价值 V π ( s ) V_{\pi}(s) Vπ(s) 作基线,得到策略梯度的一个无偏估计:

g ( s , a ; θ ) = [ Q π ( s , a ) − V π ( s ) ] ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) . \boxed{\boldsymbol{g}(s,a;\boldsymbol{\theta})=\left[Q_{\pi}(s,a)-V_{\pi}(s)\right]\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a|s;\boldsymbol{\theta}).} g(s,a;θ)=[Qπ(s,a)Vπ(s)]θlnπ(as;θ).

我们在深度强化学习(王树森)笔记03: 主要介绍policy network, policy gradient,REINFORCE 中学过 REINFORCE, 它使用实际观测的回报 u u u 来代替动作价值 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a)。 此处我们同样用 u u u 代替 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a)。此外,我们还用一个神经网络 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) 近似状态价值函数 V π ( s ) V_{\pi}(s) Vπ(s)。这样一来, g ( s , a ; θ ) g(s,a;\theta) g(s,a;θ) 就被近似成了:

g ~ ( s , a ; θ ) = [ u − v ( s ; w ) ] ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) . \boxed{\quad\tilde{\boldsymbol{g}}(s,a;\boldsymbol{\theta})=\left[u-v(s;\boldsymbol{w})\right]\cdot\nabla_\theta\ln\pi(a|s;\boldsymbol{\theta}).} g~(s,a;θ)=[uv(s;w)]θlnπ(as;θ).

可以用 g ~ ( s , a ; θ ) \tilde{g}(s,a;\boldsymbol{\theta}) g~(s,a;θ) 作为策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 的近似,更新策略网络参数:

θ ← θ + β ⋅ g ~ ( s , a ; θ ) \theta\:\leftarrow\:\theta\:+\:\beta\cdot\tilde{\boldsymbol{g}}(s,a;\:\boldsymbol{\theta}) θθ+βg~(s,a;θ)

策略网络和价值网络

带基线的 REINFORCE 需要两个神经网络:策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ) 和价值网络 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) ;
神经网络结构如图 8.2 和 8.3 所示。策略网络与之前章节一样:输入是状态 s s s, 输出是一个向量,每个元素表示一个动作的概率。

在这里插入图片描述

此处的价值网络 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) 与之前使用的价值网络 q ( s , a ; w ) q(s,a;\boldsymbol{w}) q(s,a;w) 区别较大。此处的 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) 是对状态价值 V π V_\mathrm{\pi} Vπ的近似,而非对动作价值 Q π Q_\mathrm{\pi} Qπ 的近似。 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) 的输入是状态 s s s, 输出是一个实数,作为基线。策略网络和价值网络的输入都是状态 s s s,因此可以让两个神经网络共享卷积网络的参数,这是编程实现中常用的技巧。

虽然带基线的 REINFOKCE 有一个策略网络和一个价值网络,但是这种方法不是actor-critic。价值网络没有起到“评委”的作用,只是作为基线而已,目的在于降低方差,加速收敛。真正帮助策略网络(演员)改进参数 θ \theta θ(演员的演技)的不是价值网络,而是实际观测到的回报 u u u

算法的推导

训练策略网络的方法是近似的策略梯度上升。从 t t t 时刻开始,智能体完成一局游戏,观测到全部奖励 r t , r t + 1 , ⋯ , r n r_t,r_{t+1},\cdots,r_n rt,rt+1,,rn,然后计算回报 u t = ∑ k = t n γ k − t ⋅ r k u_t=\sum_{k=t}^n\gamma^{k-t}\cdot r_k ut=k=tnγktrk。让价值网络做出预测 v ^ t = v ( s t ; w ) \widehat{v}_t=v(s_t;\boldsymbol{w}) v t=v(st;w), 作为基线。这样就得到了带基线的策略梯度:
g ~ ( s t , a t ; θ ) = ( u t − v ^ t ) ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) . \tilde{\boldsymbol{g}}\big(s_{t},a_{t};\:\boldsymbol{\theta}\big)\:=\:\big(\:u_{t}-\widehat{v}_{t}\big)\:\cdot\:\nabla_{\boldsymbol{\theta}}\:\ln\pi\big(a_{t}\big|\:s_{t};\:\boldsymbol{\theta}\big). g~(st,at;θ)=(utv t)θlnπ(at st;θ).

它是策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 的近似。最后做梯度上升更新 θ : \theta: θ:

θ ← θ + β ⋅ g ~ ( s t , a t ; θ ) . \theta\:\leftarrow\:\theta+\beta\cdot\tilde{\boldsymbol{g}}(s_{t},a_{t};\:\theta). θθ+βg~(st,at;θ).

这样可以让目标函数 J ( θ ) J(\boldsymbol{\theta}) J(θ) 逐渐增大。

训练价值网络的方法是回归 (regression)。回忆一下,状态价值是回报的期望:

V π ( s t ) = E [ U t ∣ S t = s t ] , V_\pi(s_t)=\mathbb{E}[U_t|S_t=s_t], Vπ(st)=E[UtSt=st],

期望消掉了动作 A t , A t + 1 , ⋯ , A n A_t,A_{t+1},\cdots,A_n At,At+1,,An 和状态 S t + 1 , ⋯ , S n S_{t+1},\cdots,S_n St+1,,Sn。训练价值网络的目的是让 v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) 拟合 V π ( s t ) V_\pi(s_t) Vπ(st),即拟合 u t u_t ut 的期望。定义损失函数:

L ( w ) = 1 2 n ∑ t = 1 n [ v ( s t ; w ) − u t ] 2 . L(\boldsymbol{w})\:=\:\frac{1}{2n}\sum_{t=1}^{n}\big[v(s_{t};\boldsymbol{w})\:-\:u_{t}\big]^{2}. L(w)=2n1t=1n[v(st;w)ut]2.

v ^ t = v ( s t ; w ) \widehat{v}_t=v(s_t;w) v t=v(st;w)。损失函数的梯度是:

∇ w L ( w ) = 1 n ∑ t = 1 n ( v ^ t − u t ) ⋅ ∇ w v ( s t ; w ) . \nabla_{\boldsymbol{w}}L(\boldsymbol{w})\:=\:\frac{1}{n}\sum_{t=1}^{n}\left(\widehat{v}_{t}-u_{t}\right)\:\cdot\:\nabla_{\boldsymbol{w}}v(s_{t};\boldsymbol{w}). wL(w)=n1t=1n(v tut)wv(st;w).

做一次梯度下降更新 w w w:

w ← w − α ⋅ ∇ w L ( w ) . w\:\leftarrow\:w\:-\:\alpha\cdot\nabla_{\boldsymbol{w}}L(\boldsymbol{w}). wwαwL(w).

训练流程

当前策略网络的参数是 θ n o w \theta_\mathrm{now} θnow,价值网络的参数是 w n o w w_\mathrm{now} wnow。执行下面的步骤,对参数做一轮更新。

  1. 用策略网络 θ n o w \theta_\mathrm{now} θnow 控制智能体从头开始玩一局游戏,得到一条轨迹 (trajectory):

s 1 , a 1 , r 1 , s 2 , a 2 , r 2 , ⋯ , s n , a n , r n . s_{1},a_{1},r_{1},\quad s_{2},a_{2},r_{2},\quad\cdots,\quad s_{n},a_{n},r_{n}. s1,a1,r1,s2,a2,r2,,sn,an,rn.

  1. 计算所有的回报:

u t = ∑ k = t n γ k − t ⋅ r k , ∀ t = 1 , ⋯ , n . u_{t}\:=\:\sum_{k=t}^{n}\gamma^{k-t}\cdot r_{k},\quad\forall\:t=1,\cdots,n. ut=k=tnγktrk,t=1,,n.

  1. 让价值网络做预测:
    v ^ t = v ( s t ; w n o w ) , ∀ t = 1 , ⋯ , n . \widehat v_{t}\:=\:v(s_{t};\boldsymbol{w_{\mathrm{now}}}),\quad\forall\:t=1,\cdots,n. v t=v(st;wnow),t=1,,n.

  2. 计算误差 δ t = v t ^ − u t , ∀ t = 1 , ⋯ , n \delta_t=\widehat{v_t}-u_t,\:\forall t=1,\cdots,n δt=vt ut,t=1,,n

  3. { s t } t = 1 n \{s_t\}_{t=1}^n {st}t=1n 作为价值网络输入,做反向传播计算:
    ∇ w v ( s t ; w n o w ) , ∀ t = 1 , ⋯ , n . \nabla_{\boldsymbol{w}}\:v\big(s_{t};\:\boldsymbol{w}_{\mathrm{now}}\big),\quad\forall\:t=1,\cdots,n. wv(st;wnow),t=1,,n.

  4. 更新价值网络参数:
    w n e w ← w n o w − α ⋅ ∑ t = 1 n δ t ⋅ ∇ w v ( s t ; w n o w ) . w_{\mathrm{new}}\:\leftarrow\:w_{\mathrm{now}}\:-\:\alpha\cdot\sum_{t=1}^{n}\delta_{t}\cdot\nabla_{\boldsymbol{w}}\:v\big(s_{t};\:\boldsymbol{w_{\mathrm{now}}}\big). wnewwnowαt=1nδtwv(st;wnow).

  5. { ( s t , a t ) } t = 1 n \{(s_t,a_t)\}_{t=1}^n {(st,at)}t=1n 作为数据,做反向传播计算:

∇ θ ln ⁡ π ( a t ∣ s t ; θ n o w ) , ∀ t = 1 , ⋯ , n . \nabla_{\boldsymbol{\theta}}\ln\pi(a_{t}\:|\:s_{t};\:\boldsymbol{\theta}_{\mathrm{now}}),\quad\forall\:t=1,\cdots,n. θlnπ(atst;θnow),t=1,,n.
8. 做随机梯度上升更新策略网络参数:

θ n e w ← θ n o w − β ⋅ ∑ t = 1 n γ t − 1 ⋅ δ t ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ n o w ) ⏟ 负的近似梯度  − g ~ ( s t , a t ; θ n o w ) . \theta_{\mathrm{new}}\:\leftarrow\:\theta_{\mathrm{now}}\:-\:\beta\:\cdot\:\sum_{t=1}^{n}\gamma^{t-1}\:\cdot\:\underbrace{\delta_{t}\:\cdot\:\nabla_{\theta}\ln\pi(a_{t}\:\big|\:s_{t};\:\theta_{\mathrm{now}}\big)}_{\text{负的近似梯度 }-\tilde{g}(s_{t},a_{t};\boldsymbol{\theta_{\mathrm{now}}})}\:. θnewθnowβt=1nγt1负的近似梯度 g~(st,at;θnow) δtθlnπ(at st;θnow).

Advantage Actor-Critic (A2C)

之前我们推导出了带基线的策略梯度,并且对策略梯度做了蒙特卡洛近似,得到策略梯度的一个无偏估计:

g ( s , a ; θ ) = [ Q π ( s , a ) − V π ( s ) ⏟ 优势函数 ] ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) . ( 8.2 ) \boldsymbol{g}(s,a;\boldsymbol{\theta})=\left[\underbrace{Q_{\pi}(s,a)-V_{\pi}(s)}_{\text{优势函数}}\right]\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a|s;\boldsymbol{\theta}).\quad{(8.2)} g(s,a;θ)= 优势函数 Qπ(s,a)Vπ(s) θlnπ(as;θ).(8.2)

公式中的 Q π − V π Q_\pi-V_\pi QπVπ 被称作优势函数 (advantage function)。因此,基于上面公式得到的actor-critic 方法被称为 advantage actor-critic, 缩写 A2C。

A2C 属于 actor-critic 方法。有一个策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ),相当于演员,用于控制智能体运动。还有一个价值网络 v ( s ; w ) v(s;w) v(s;w),相当于评委,他的评分可以帮助策略网络 (演员) 改进技术。两个神经网络的结构与上一节中的完全相同,但是本节和上一节用不同的方法训练两个神经网络。

算法推导

训练价值网络:训练价值网络 v ( s ; w ) v(s;w) v(s;w) 的算法是从贝尔曼公式来的:
V π ( s t ) = E A t ∼ π ( ⋅ ∣ s t ; θ ) [ E S t + 1 ∼ p ( ⋅ ∣ s t , A t ) [ R t + γ ⋅ V π ( S t + 1 ) ] ] . V_{\pi}(s_{t})\:=\:\mathbb{E}_{A_{t}\sim\pi(\cdot|s_{t};\theta)}\Big[\mathbb{E}_{S_{t+1}\sim p(\cdot|s_{t},A_{t})}\Big[R_{t}\:+\:\gamma\cdot V_{\pi}\big(S_{t+1}\big)\Big]\Big]. Vπ(st)=EAtπ(st;θ)[ESt+1p(st,At)[Rt+γVπ(St+1)]].

我们对贝尔曼方程左右两边做近似:

  • 方程左边的 V π ( s t ) V_\pi(s_t) Vπ(st)可以近似成 v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) 是价值网络在 t t t 时刻对 V π ( s t ) V_\pi(s_t) Vπ(st) 做出的估计。
  • 方程右边的期望是关于当前时刻动作 A t A_t At 与下一时刻状态 S t + 1 S_{t+1} St+1 求的。给定当前状态 s t s_t st,智能体执行动作 a t a_t at,环境会给出奖励 r t r_t rt 和新的状态 s t + 1 s_{t+1} st+1。用观测到的 r t r_t rt s t + 1 s_{t+1} st+1 对期望做蒙特卡洛近似,得到:

r t + γ ⋅ V π ( s t + 1 ) . ( 8.3 ) r_{t}+\gamma\cdot V_{\pi}(s_{t+1}). \quad(8.3) rt+γVπ(st+1).(8.3)

  • 进一步把公式 (8.3) 中的 V π ( s t + 1 ) V_{\pi}(s_{t+1}) Vπ(st+1) 近似成 v ( s t + 1 ; w ) v(s_{t+1};\boldsymbol{w}) v(st+1;w), 得到

y ^ t ≜ r t + γ ⋅ v ( s t + 1 ; w ) . \boxed{\widehat{y}_{t}\triangleq r_{t}+\gamma\cdot v(s_{t+1};\boldsymbol{w}).} y trt+γv(st+1;w).

​ 把它称作 TD 目标。它是价值网络在 t + 1 t+1 t+1 时刻对 V π ( s t ) V_{\pi}(s_t) Vπ(st) 做出的估计。

v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) y ^ t \widehat{y}_t y t 都是对动作价值 V π ( s t ) V_{\pi}(s_t) Vπ(st) 的估计。由于 y ^ t \widehat{y}_t y t 部分基于真实观测到的奖励 r t r_t rt,我们认为 y ^ t \widehat{y}_t y t v ( s t ; w ) v(s_t;w) v(st;w) 更可靠。所以把 y ^ t \widehat{y}_t y t 固定住,更新 w w w, 使得 v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) 更接近 y ^ t \widehat{y}_t y t

具体这样更新价值网络参数 w w w。定义损失函数

L ( w ) ≜ 1 2 [ v ( s t ; w ) − y ^ t ] 2 . L(\boldsymbol{w})\:\triangleq\:\frac{1}{2}\Big[v(s_{t};\boldsymbol{w})\:-\:\widehat{y}_{t}\Big]^{2}. L(w)21[v(st;w)y t]2.

v ^ t ≜ v ( s t ; w ) \widehat{v}_t\triangleq v(s_t;w) v tv(st;w)。损失函数的梯度是:

∇ w L ( w ) = ( v ^ t − y ^ t ) ⏟ T D 误差  δ t ⋅ ∇ w v ( s t ; w ) . \nabla_{\boldsymbol{w}}L\big(\boldsymbol{w}\big)\:=\:\underbrace{\left(\widehat{v}_{t}-\widehat{y}_{t}\right)}_{\mathrm{TD~}\text{误差 }\delta_{t}}\cdot\nabla_{\boldsymbol{w}}\:v\big(s_{t};\boldsymbol{w}\big). wL(w)=TD 误差 δt (v ty t)wv(st;w).
定义 TD 误差为 δ t ≜ v ^ t − y ^ t \delta_t\triangleq\widehat{v}_t-\widehat{y}_t δtv ty t。做一轮梯度下降更新 w : w: w:

w ← w − α ⋅ δ t ⋅ ∇ w v ( s t ; w ) . \boxed{\boldsymbol{w}\:\leftarrow\:\boldsymbol{w}\:-\:\alpha\cdot\delta_{t}\:\cdot\:\nabla_{\boldsymbol{w}}\:v(s_{t};\boldsymbol{w}).} wwαδtwv(st;w).

这样可以让价值网络的预测 v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) 更接近 y ^ t \widehat{y}_t y t

训练策略网络:A2C 从公式 (8.2)出发,对 g ( s , a ; θ ) g(s,a;\theta) g(s,a;θ) 做近似,记作 g ~ \tilde{g} g~, 然后用 g ~ \tilde{g} g~ 更新策略网络参数 θ \theta θ。下面我们做数学推导。回忆一下贝尔曼公式:
Q π ( s t , a t ) = E S t + 1 ∼ p ( ⋅ ∣ s t , a t ) [ R t + γ ⋅ V π ( S t + 1 ) ] . Q_{\pi}\big(s_{t},a_{t}\big)\:=\:\mathbb{E}_{S_{t+1}\sim p(\cdot|s_{t},a_{t}\big)}\Big[\:R_{t}\:+\:\gamma\cdot V_{\pi}\big(S_{t+1}\big)\:\Big]. Qπ(st,at)=ESt+1p(st,at)[Rt+γVπ(St+1)].
把近似策略梯度 g ( s t , u t ; θ ) g(s_t,u_t;\boldsymbol{\theta}) g(st,ut;θ) 中的 Q π ( s t , a t ) Q_\pi(s_t,a_t) Qπ(st,at) 替换成上面的期望,得到:

g ( s t , a t ; θ ) = [ Q π ( s t , a t ) − V π ( s t ) ] ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) = [ E S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ] − V π ( s t ) ] ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) . \begin{aligned} \boldsymbol{g}(s_{t},a_{t};\boldsymbol{\theta})& =\left[Q_{\pi}\left(s_{t},a_{t}\right)-V_{\pi}\big(s_{t}\big)\right]\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a_{t}|s_{t};\boldsymbol{\theta}) \\ &\begin{array}{rcl}{=}&{{}\left[\mathbb{E}_{S_{t+1}}\right[R_{t}+\gamma\cdot V_{\pi}\big(S_{t+1}\big)]-V_{\pi}\big(s_{t}\big)]\cdot\nabla_{\theta}\ln\pi\big(a_{t}\big|s_{t};\theta\big).}\end{array} \end{aligned} g(st,at;θ)=[Qπ(st,at)Vπ(st)]θlnπ(atst;θ)=[ESt+1[Rt+γVπ(St+1)]Vπ(st)]θlnπ(at st;θ).

当智能体执行动作 a t a_t at 之后,环境给出新的状态 s t + 1 s_{t+1} st+1 和奖励 r t r_t rt; 利用 s t + 1 s_{t+1} st+1 r t r_t rt 对上面的期望做蒙特卡洛近似,得到:
g ( s t , a t ; θ ) ≈ [ r t + γ ⋅ V π ( s t + 1 ) − V π ( s t ) ] ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) . \begin{array}{rcl}g(s_t,a_t;\:\theta)&\approx&\Big[\:r_t\:+\:\gamma\cdot V_\pi\big(s_{t+1}\big)\:-\:V_\pi\big(s_t\big)\:\Big]\:\cdot\:\nabla_\theta\:\ln\pi\big(a_t\:\big|\:s_t;\:\theta\big).\end{array} g(st,at;θ)[rt+γVπ(st+1)Vπ(st)]θlnπ(at st;θ).

进一步把状态价值函数 V π ( s ) V_{\pi}(s) Vπ(s) 替换成价值网络 v ( s ; w ) v(s;w) v(s;w), 得到:

g ~ ( s t , a t ; θ ) ≜ [ r t + γ ⋅ v ( s t + 1 ; w ) ⏟ TD 目标  y ^ t − v ( s t ; w ) ] ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) . \begin{array}{rcl}\tilde{\boldsymbol{g}}(s_t,a_t;\boldsymbol{\theta})&\triangleq&\Big[\underbrace{r_t\:+\:\gamma\cdot v(s_{t+1};\boldsymbol{w})}_{\text{TD 目标 }\widehat{y}_t}-v(s_t;\boldsymbol{w})\:\Big]\:\cdot\:\nabla_{\boldsymbol{\theta}}\ln\pi(a_t\:|\:s_t;\boldsymbol{\theta}).\end{array} g~(st,at;θ)[TD 目标 y t rt+γv(st+1;w)v(st;w)]θlnπ(atst;θ).
前面定义了 TD 目标和 TD 误差:

y ^ t ≜ r t + γ ⋅ v ( s t + 1 ; w ) 和 δ t ≜ v ( s t ; w ) − y ^ t . \widehat{y}_{t}\:\triangleq\:r_{t}\:+\:\gamma\cdot v(s_{t+1};\:\boldsymbol{w})\quad\text{和}\quad\delta_{t}\:\triangleq\:v(s_{t};\:\boldsymbol{w})\:-\:\widehat{y}_{t}. y trt+γv(st+1;w)δtv(st;w)y t.
因此,可以把 g ~ \tilde{g} g~写成:

g ~ ( s t , a t ; θ ) ≜ − δ t ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) . \boxed{\tilde{\boldsymbol{g}}(s_t,a_t;\boldsymbol{\theta})\triangleq-\delta_t\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a_t|s_t;\boldsymbol{\theta}).} g~(st,at;θ)δtθlnπ(atst;θ).

g ~ \tilde{g} g~ g g g 的近似,所以也是策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 的近似。用 g ~ \tilde{g} g~ 更新策略网络参数 θ \theta θ:
θ ← θ + β ⋅ g ~ ( s t , a t ; θ ) . \theta\:\leftarrow\:\theta\:+\:\beta\cdot\tilde{\boldsymbol{g}}\left(s_t,a_t;\:\boldsymbol{\theta}\right). θθ+βg~(st,at;θ).

这样可以让目标函数 J ( θ ) J(\theta) J(θ) 变大。

策略网络与价值网络的关系 : A2C 中策略网络 (演员) 和价值网络 (评委) 的关系如图 8.4 所示。

在这里插入图片描述

智能体由策略网络 π 控制,与环境交互,并收集状态、动作、奖励。策略网络(演员) 基于状态 s t s_t st 做出动作 a t a_t at。价值网络 (评委) 基于 s t s_t st s t + 1 s_{t+1} st+1 r t r_t rt 算出 TD 误差 δ t \delta_t δt。策略网络(演员) 依靠 δ t \delta_t δt 来判断自己动作的好坏,从而改进自己的演技 (即参数 θ \theta θ)。

读者可能会有疑问: 价值网络 v v v 只知道两个状态 s t s_t st s t + 1 s_{t+1} st+1,而并不知道动作 a t a_t at,那么价值网络为什么能评价 a t a_t at 的好坏呢?价值网络 v v v 告诉策略网络 π \pi π 的唯一信息是 δ t \delta_{t} δt。回顾一下 δ t \delta_t δt 的定义:
− δ t = r t + γ ⋅ v ( s t + 1 ; w ) ⏟ TD 目标 y ^ t − v ( s t ; w ) ⏟ 基线 . \begin{array}{rcl}-\delta_t&=&\underbrace{r_t\:+\:\gamma\cdot v(s_{t+1};\:\boldsymbol{w})}_{\text{TD 目标}\:\widehat{y}_t}\:-\:\underbrace{v(s_t;\:\boldsymbol{w})}_\text{基线}.\end{array} δt=TD 目标y t rt+γv(st+1;w)基线 v(st;w).

基线 v ( s t ; w ) v(s_t;\boldsymbol{w}) v(st;w) 是价值网络在 t t t 时刻对 E [ U t ] \mathbb{E}[U_t] E[Ut] 的估计;此时智能体尚未执行动作 a t a_t at。而 TD 目标 y ^ t \widehat{y}_t y t 是价值网络在 t + 1 t+1 t+1 时刻对 E [ U t ] \mathbb{E}[U_t] E[Ut] 的估计;此时智能体已经执行动作 a t a_t at

  • 如果 y ^ t > v ( s t ; w ) \widehat{y}_t>v(s_t;\boldsymbol{w}) y t>v(st;w),说明动作 a t a_t at 很好,使得奖励 r t r_t rt 超出预期,或者新的状态 s t + 1 s_{t+1} st+1 比预期好;这种情况下应该更新 θ \theta θ,使得 π ( a t ∣ s t ; θ ) \pi(a_t|s_t;\theta) π(atst;θ) 变大。
  • 如果 y ^ t < v ( s t ; w ) \widehat{y}_t<v(s_t;\boldsymbol{w}) y t<v(st;w),说明动作 a t a_t at 不好,导致奖励 r t r_t rt不及预期,或者新的状态 s t + 1 s_{t+1} st+1比预期差;这种情况下应该更新 θ \theta θ,使得 π ( a t ∣ s t ; θ ) \pi(a_t|s_t;\theta) π(atst;θ) 减小。

综上所述, δ t \delta_t δt 中虽然不包含动作 a t a_t at,但是 δ t \delta_t δt 可以间接反映出动作 a t a_t at 的好坏,可以帮助策略网络(演员) 改进演技。

训练流程

下面概括 A2C 训练流程。设当前策略网络参数是 θ n o w \theta_\mathrm{now} θnow,价值网络参数是 w n o w w_\mathrm{now} wnow。执行下面的步骤,将参数更新成 θ n e w \theta_\mathrm{new} θnew w n e w w_\mathrm{new} wnew:

  1. 观测到当前状态 s t s_t st,根据策略网络做决策 : a t ∼ π ( ⋅ ∣ s t ; θ n o w ) :a_t\sim\pi(\cdot|s_t;\theta_\mathrm{now}) :atπ(st;θnow),并让智能体执行动作 a t a_t at

  2. 从环境中观测到奖励 r t r_t rt 和新的状态 s t + 1 s_{t+1} st+1

  3. 让价值网络打分:

v t ^ = v ( s t ; w n o w ) 和 v ^ t + 1 = v ( s t + 1 ; w n o w ) \widehat{v_{t}}\:=\:v\big(s_{t};\:\boldsymbol{w_{\mathrm{now}}}\big)\quad\text{和}\quad\widehat{v}_{t+1}\:=\:v\big(s_{t+1};\:\boldsymbol{w_{\mathrm{now}}}\big) vt =v(st;wnow)v t+1=v(st+1;wnow)

  1. 计算 TD 目标和 TD 误差:

y t ^ = r t + γ ⋅ v ^ t + 1 和 δ t = v ^ t − y ^ t . \widehat{y_{t}}\:=\:r_{t}+\gamma\cdot\widehat{v}_{t+1}\quad\text{和}\quad\delta_{t}\:=\:\widehat{v}_{t}-\widehat{y}_{t}. yt =rt+γv t+1δt=v ty t.

  1. 更新价值网络:

w n e w ← w n o w − α ⋅ δ t ⋅ ∇ w v ( s t ; w n o w ) . w_{\mathrm{new}}\:\leftarrow\:w_{\mathrm{now}}\:-\:\alpha\cdot\delta_{t}\cdot\nabla_{\boldsymbol{w}}v\left(s_{t};\:\boldsymbol{w_{\mathrm{now}}}\right). wnewwnowαδtwv(st;wnow).

  1. 更新策略网络:

θ n e w ← θ n o w − β ⋅ δ t ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ n o w ) . \theta_{\mathrm{new}}\:\leftarrow\:\theta_{\mathrm{now}}\:-\:\beta\cdot\delta_{t}\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a_{t}\:|\:s_{t};\:\boldsymbol{\theta}_{\mathrm{now}}). θnewθnowβδtθlnπ(atst;θnow).

注 此处训练策略网络和价值网络的方法属于同策略(on-policy),要求行为策略(behavion policy)与目标策略 (target policy) 相同,都是最新的策略网络 π ( a ∣ s ; θ n o w ) \pi(a|s;\theta_\mathrm{now}) π(as;θnow)。不能使用经验回放,因为经验回放数组中的数据是用旧的策略网络 π ( a ∣ s ; θ o l d ) \pi(a|s;\theta_\mathrm{old}) π(as;θold) 获取的,不能在当前重复利用。

用目标网络改进训练

上述训练价值网络的算法存在自举——即用价值网络自己的估值 v ^ t + 1 \widehat{v}_{t+1} v t+1去更新价值网络自己。为了缓解自举造成的偏差,可以使用目标网络(target network) 计算 TD 目标。把目标网络记作 v ( s ; w − ) v(s;w^-) v(s;w), 它的结构与价值网络的结构相同,但是参数不同。使用目标网络计算 TD 目标,那么 A2C 的训练就变成了:

  1. 观测到当前状态 s t s_t st,根据策略网络做决策 : a t ∼ π ( ⋅ ∣ s t ; θ n o w ) :a_t\sim\pi(\cdot|s_t;\theta_\mathrm{now}) :atπ(st;θnow), 并让智能体执行动作 a t a_t at
  2. 从环境中观测到奖励 r t r_t rt 和新的状态 s t + 1 s_{t+1} st+1
  3. 让价值网络给 s t s_t st 打分:

v t ^ = v ( s t ; w n o w ) . \widehat{v_{t}}\:=\:v\big(s_{t};\:\boldsymbol{w_{\mathrm{now}}}\big). vt =v(st;wnow).

  1. 让目标网络给 s t + 1 s_{t+1} st+1 打分:

v ^ t + 1 − = v ( s t + 1 ; w n o w − ) . \widehat v_{t+1}^{-}\:=\:v\big(s_{t+1};\:\boldsymbol{w_{\mathrm{now}}^{-}}\big). v t+1=v(st+1;wnow).

  1. 计算 TD 目标和 TD 误差:

y ^ t − = r t + γ ⋅ v ^ t + 1 − 和 δ t = v ^ t − y ^ t − . \widehat{y}_{t}^{-}\:=\:r_{t}+\gamma\cdot\widehat{v}_{t+1}^{-}\quad\text{和}\quad\delta_{t}\:=\:\widehat{v}_{t}-\widehat{y}_{t}^{-}. y t=rt+γv t+1δt=v ty t.

  1. 更新价值网络:

w n e w ← w n o w − α ⋅ δ t ⋅ ∇ w v ( s t ; w n o w ) . w_{\mathrm{new}}\:\leftarrow\:w_{\mathrm{now}}-\alpha\cdot\delta_{t}\cdot\nabla_{\boldsymbol{w}}v\big(s_{t};\:\boldsymbol{w}_{\mathrm{now}}\big). wnewwnowαδtwv(st;wnow).

  1. 更新策略网络:

θ n e w ← θ n o w − β ⋅ δ t ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ n o w ) . \theta_{\mathrm{new}}\:\leftarrow\:\theta_{\mathrm{now}}\:-\:\beta\cdot\delta_{t}\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a_{t}\:|\:s_{t};\:\boldsymbol{\theta}_{\mathrm{now}}). θnewθnowβδtθlnπ(atst;θnow).

  1. τ ∈ ( 0 , 1 ) \tau\in(0,1) τ(0,1) 是需要手动调的超参数。做加权平均更新目标网络的参数:

w n e w ˉ ← τ ⋅ w n e w + ( 1 − τ ) ⋅ w n o w − . \bar{w_{\mathrm{new}}}\:\leftarrow\:\tau\cdot w_{\mathrm{new}}\:+\:\left(1-\tau\right)\cdot\boldsymbol{w_{\mathrm{now}}^{-}}. wnewˉτwnew+(1τ)wnow.

总结

  • 在策略梯度中加入基线 (baseline) 可以降低方差,显著提升实验效果。实践中常用 b = V π ( s ) b=V_{\pi}(s) b=Vπ(s) 作为基线。

  • 可以用基线来改进 REINFORCE 算法。价值网络 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) 近似状态价值函数 V π ( s ) V_\pi(s) Vπ(s) ,把 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w) 作为基线。用策略梯度上升来更新策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ)。用蒙特卡洛(而非自举) 来更新价值网络 v ( s ; w ) v(s;\boldsymbol{w}) v(s;w)

  • 可以用基线来改进 actor-critic, 得到的方法叫做 advantage actor-critic(A2C),它也有一个策略网络 π ( a ∣ s ; θ ) \pi(a|s;\boldsymbol{\theta}) π(as;θ) 和一个价值网络 v ( s ; θ ) v(s;\boldsymbol{\theta}) v(s;θ)。用策略梯度上升来更新策略网络,用 TD 算法来更新价值网络。

后记

截至2024年1月29日20点11分,学习完这一章的内容:带baseline的策略梯度方法。明天是最后学习的一天,看是否能够结束这个系列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/656371.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构:顺序表】

文章目录 线性表顺序表1.1 顺序表结构的定义1.2 初始化顺序表1.3 检查顺序表空间1.4 打印1.5 尾插1.6 头插1.7 尾删1.8 头删1.9 查找1.10 指定位置插入1.11 删除指定位置数据1.12 销毁顺序表 数据结构(Data Structure)是计算机存储、组织数据的方式&#xff0c;指相互之间存在一…

2024Cypress自动化测试开发指南!

cypress是基于JavaScript语言为编写语言的自动化测试开发工具&#xff0c;配合使用cucumber测试开发框架&#xff0c;以node.js为服务进程&#xff0c;可以简单的帮助测试人员完成需要人工手点的所有页面人机交互操作&#xff0c;可以模拟键盘和鼠标输入&#xff0c;快捷完成ca…

使用串口WiFi透传模块需要解决的几个问题,2串口双串口,3串口多串口转WiFi模块S2W-M02

我们知道在现在物联网时代&#xff0c;串口设备通过WiFi联网上传数据已经有很多的场景需求。但是&#xff0c;现在市面上的大部分串口转WiFi模块都仅仅支持一个串口的数据透传应用。 如果串口转WiFi模块仅仅有一个串口资源进行透传&#xff0c;那么它的应用场景是如下的&#x…

问卷发放实战指南:提高问卷回收率与数据质量的技巧

进行问卷调查分为四步&#xff1a;制作问卷、发放问卷、收集问卷、分析问卷。其中&#xff0c;发放问卷起到了关键性的作用。他关乎到我们后续收集问卷是否顺利&#xff0c;收集到的问卷数据是否具备真实性和有效性。那么&#xff0c;怎么有效地进行问卷发放呢&#xff1f; ​…

【C项目】顺序表

简介&#xff1a;本系列博客为C项目系列内容&#xff0c;通过代码来具体实现某个经典简单项目 适宜人群&#xff1a;已大体了解C语法同学 作者留言&#xff1a;本博客相关内容如需转载请注明出处&#xff0c;本人学疏才浅&#xff0c;难免存在些许错误&#xff0c;望留言指正 作…

网络战新高度!俄罗斯280台服务器被摧毁,200万GB数据丢失

Hackread网站消息&#xff0c;乌克兰国防部主要情报总局&#xff08;HUR&#xff09;的网络安全专家宣称对俄罗斯IPL咨询公司发起了一次成功的网络攻击&#xff0c;摧毁了该公司所有的IT基础设施&#xff0c;导致全国通信中断。 乌克兰HUR在Facebook上的发布公告表示&#xff0…

nginx负载均衡案例

大家好今天给大家带来nginx负载均衡实验案例,首大家先看一下我的各类版本信息。&#xff08;还有两台设备信息相同就不展示了&#xff09; 一&#xff0c;搭建nginx环境 ❶首先创建Nginx的目录并进入&#xff1a; [rootlocalhost]# mkdir /soft && mkdir /soft/nginx…

电气自动化行业,全面数字化工作流程

电气自动化行业数字化转型所需流程软件&#xff0c;与大家分享如下&#xff1a; D-Hub企业数字化协同平台、SuperHarness数字线束软件、SuperPanel母排设计软件、D-Hub生产管理系统&#xff0c;全面的数字化工作流程&#xff0c;智能降本增效&#xff01; D-Hub D-Hub是一款…

解决网站 “debugger“ 阻止调试

某些网站耍小聪明 以为在网站内 添加了 debugger 就能阻止别人对网站进行调试&#xff01; 针对某些网站 当你浏览器打开F12 后 你发现无论你怎么执行下一步 你始终停留在 debugger 这个代码文件内现在的问题是 每当我执行 下一步调试 时 都会被 “(function(){setInterval(f…

洗地机怎么选?洗地机选购必看

如今&#xff0c;洗地机已经成为了我们地板清洁的主力军了&#xff0c;但市场上的产品繁多让人眼花缭乱&#xff0c;不少朋友做了半天功课&#xff0c;还是不明白到底哪款产品适合自己。所以今天笔者给大家带来了满满的洗地机选购干货&#xff0c;还给大家附赠了选购清单&#…

AI创作之旅:探索提示工程的奇妙世界

目录 推荐 1. 引言 2. 什么是提示工程&#xff1f; 3. 准备工作 3.1 安装必要的库 3.2 获取 OpenAI API 密钥 4 设置 OpenAI API 密钥 5. 提示工程实战 6. 探索更多可能性 6.1 尝试不同的提示 6.2 调整参数 结语 ⭐️ 好书推荐 推荐 前些天发现了一个巨牛的人工智…

软件物料清单管理 | 打开“应用软件盲盒”,预警“开源组件风险”

更多网络安全干货内容&#xff1a;点此获取 ——————— 01 开源组件安全风险管控难 随着软件规模化发展和开源软件的兴起&#xff0c;越来越多的软件在开发过程中集成第三方组件或开源组件&#xff0c;这极大地提高了开发效率&#xff0c;但也难以避免地引入了安全风险。…

在RunnerGo测试平台中做WebSocket、Dubbo、TCP/IP接口测试

大家好&#xff0c;RunnerGo作为一款一站式测试平台不断为用户提供更好的使用体验&#xff0c;最近得知RunnerGo新增对&#xff0c;WebSocket、Dubbo、TCP/IP&#xff0c;三种协议API的测试支持&#xff0c;本篇文章跟大家分享一下使用方法。 WebSocket协议 WebSocket 是一种…

SpringBoot整合EasyCaptcha图形验证码

简介 EasyCaptcha&#xff1a;https://github.com/ele-admin/EasyCaptcha Java图形验证码&#xff0c;支持gif、中文、算术等类型&#xff0c;可用于Java Web、JavaSE等项目。 添加依赖 <dependency><groupId>com.github.whvcse</groupId><artifactId…

从公有云对象存储迁移到回私有化 MinIO需要了解的所有信息

我们上一篇文章《如何从 AWS S3 遣返到 MinIO》的反响非常出色 - 我们已经接到了数十个企业的电话&#xff0c;要求我们提供遣返建议。我们已将这些回复汇总到这篇新文章中&#xff0c;其中我们更深入地研究了与遣返相关的成本和节省&#xff0c;以便您更轻松地进行自己的分析。…

【MyBatis】快速入门MyBatis(保姆式教学),你值得一看

文章目录 &#x1f4c4;前言一. Mybatis简介✈️1. 什么是Mybatis&#x1f680;2. 为什么使用Mybatis 二. Mybatis快速入门&#x1f346;1. mybatis使用前准备1.1 创建springboot项目并引入相关依赖1.2 在 application.ym中进行数据源的配置1.3 创建数据表&#xff0c;准备表数…

Walrus 0.5发布:重构交互流程,打造开箱即用的部署体验

开源应用管理平台 Walrus 0.5 已于近日正式发布&#xff01; Walrus 0.4 引入了全新应用模型&#xff0c;极大程度减少了重复的配置工作&#xff0c;并为研发团队屏蔽了云原生及基础设施的复杂度。Walrus 0.5 在这一基础上&#xff0c;通过重构交互流程、增强抽象能力&#xff…

C++中 this指针、构造函数、析构函数

1.this指针 我们定义一个日期类来举例子 对于上述类&#xff0c;有这样一个问题&#xff0c;Date类中有Init和Print这两个成员函数&#xff0c;函数体中没有关于不同对象的区分&#xff0c;那d1调用函数的时候&#xff0c;编译器是如和来确定d1而不是d2呢&#xff1f;C通过引入…

github请求超时解决方法

github请求超时解决办法 我使用windows执行如下git命令,提示超时 git clone xxxxx命令行提示如下&#xff1a; Failed to connect to github.com port 443: Timed out问题排查 可我Chrome可以正常访问github甚至ChatGPT&#xff0c;但是为什么在命令行里面却无法访问&#…

【Servlet】Smart Tomcat插件简化Servlet开发流程及解决常见问题

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【Servlet】 本专栏旨在分享学习Servlet的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 一、Smart Tomcat插件二…