基于YOLOv8深度学习的水稻叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:水稻叶片病害智能诊断系统可以帮助农民和专业人士准确、快速地识别水稻叶片上的病害,从而采取相应的防治措施,提高水稻产量和质量,减少经济损失。本文基于YOLOv8深度学习框架,通过5932张图片,训练了一个水稻叶片病害智能诊断的识别模型,可用于识别4种不同的水稻病害类型。并基于此模型开发了一款带UI界面的水稻叶片病害智能诊断系统,可用于实时识别场景中的水稻叶片病害类型,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

水稻叶片病害智能诊断系统可以帮助农民和专业人士准确、快速地识别水稻叶片上的病害,从而采取相应的防治措施,提高水稻产量和质量,减少经济损失。

该系统的具体应用场景包括:
农田病害监测:系统可安装在无人机或机器人上,通过航拍或移动检测,在大范围的农田中快速发现水稻叶片病害,帮助农民针对性地进行病虫害防治。
实时诊断:系统能够在实时环境中对水稻叶片进行病害诊断,快速判断病害类型,为及时采取措施提供准确的参考,避免病害的扩散和加重。
病害样本库建设:系统可以收集和保存大量水稻叶片病害样本的图像和诊断结果,建立起完善的病害样本库,为后续的学习与诊断提供有力支持。
多种病害检测:系统不仅可以识别水稻叶片常见的病害如纹枯病、白叶枯病等,也可以适应新出现的水稻病害,提供更加全面的病害检测能力。
综上所述,水稻叶片病害智能诊断系统在现代农业生产中具有重要意义,可以提高农作物的生产效益和质量,为农民和专业人士提供精确的病害诊断和预防控制方法。

博主通过搜集水稻叶片病害的相关数据图片并整理,根据YOLOv8的深度学习技术训练识别模型,并基于python与Pyqt5开发了一款界面简洁的水稻叶片病害智能诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行4种不同水稻叶片病害的类型识别,分别为:['白叶枯病', '稻瘟病', '褐斑病', '枯草病'];
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的水稻叶片病害数据集共包含5932张图片,分为4个病害类别,分别是['白叶枯病', '稻瘟病', '褐斑病', '枯草病']。部分数据集及类别信息如下:
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':model.train(data='datasets/Data', epochs=300, batch=4)# results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为1.0,结果还是很不错的。
在这里插入图片描述

在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/BACTERAILBLIGHT3_002.jpg"# 加载模型
model = YOLO(path, task='classify')# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款水稻叶片病害智能诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的水稻叶片病害智能诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/655914.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3使用vant检索组件van-search的坑

当清空按钮与检索按钮同时居右时&#xff0c;点击clear清空按钮事件时会同时触发click-right-icon事件,如下配置&#xff1a; <van-searchv-model"form.search"show-actionshape"round"left-icon""right-icon"search"placeholder&…

Python(19)Excel表格操作Ⅰ

目录 导包 读取EXCEL文件 1、获取worksheet名称 2、设定当前工作表 3、输出目标单元格数据 4、工作表.rows&#xff08;行&#xff09; 5、工作表.columns&#xff08;列&#xff09; 小结 导包 要想使用 python 操作 Excel 文件&#xff0c;应当导入 openpyxl 包。在…

03:华为云管理|云主机管理|云项目实战

华为云管理&#xff5c;云主机管理&#xff5c;云项目实战 安全组配置部署跳板机配置yum源&#xff0c;安装软件包优化系统服务安装配置ansible管理主机 模版镜像配置配置yum源&#xff0c;安装软件包优化系统 网站云平台部署实战华为云的负载均衡 安全组配置 设置安全组 云…

【Docker】docker安装jenkins

一、执行命令 下载jenkins镜像 #下载jenkins 镜像 docker pull jenkins/jenkins:latest-jdk8 启动jenkins容器 #启动jenkins 容器 #挂载 如果不挂载 每次启动jenkins的配置、插件、用户等信息都没有了 #jenkins_home 包含jenkins配置、插件、用户等信息。 要指定必须配置用…

【AI视野·今日NLP 自然语言处理论文速览 第七十六期】Fri, 12 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Fri, 12 Jan 2024 Totally 60 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Axis Tour: Word Tour Determines the Order of Axes in ICA-transformed Embeddings Authors Hiroaki Yamagi…

linux离线升级openssh方法

检查openssh版本&#xff1a; 升级前openssh 版本为7.4 openssl 版本为1.0.2k Openssh9.6 所需openssl >1.1.1 因此openssl也需要升级。 为了防止升级失败&#xff0c;无法使用SSH登录&#xff0c;首先安装telnet 预防。查看是否安装了telnet 客户端及服务 未安装tel…

Java - JDBC

Java - JDBC 文章目录 Java - JDBC引言JDBC1 什么是JDBC2 MySQL数据库驱动3 JDBC开发步骤4 具体介绍 引言 思考: 当下我们如何操作数据库&#xff1f; 使用客户端工具访问数据库&#xff0c;手工建立连接&#xff0c;输入用户名和密码登录。编写SQL语句&#xff0c;点击执行…

Vue(十九):ElementUI 扩展实现树形结构表格组件的勾父选子、半勾选、过滤出半勾选节点功能

效果 原理分析 从后端获取数据后,判断当前节点是否勾选,从而判断是否勾选子节点勾选当前节点时,子节点均勾选全勾选与半勾选与不勾选的样式处理全勾选和全取消勾选的逻辑筛选出半勾选的节点定义变量 import {computed, nextTick, reactive, ref} from vue; import {tree} f…

解剖 Python 代码,深入学习 interpret 库的功能和应用!

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com Python是一门广泛应用的编程语言&#xff0c;拥有丰富的标准库和第三方库&#xff0c;可以用于各种应用场景。在Python中&#xff0c;有一个名为interpret的库&#xff0c;它提供了一种强大的方式来处理和执行Py…

【大数据】Flink 架构(三):事件时间处理

《Flink 架构》系列&#xff08;已完结&#xff09;&#xff0c;共包含以下 6 篇文章&#xff1a; Flink 架构&#xff08;一&#xff09;&#xff1a;系统架构Flink 架构&#xff08;二&#xff09;&#xff1a;数据传输Flink 架构&#xff08;三&#xff09;&#xff1a;事件…

基于C#制作一个俄罗斯方块小游戏

目录 引言游戏背景介绍游戏规则游戏设计与实现开发环境与工具游戏界面设计游戏逻辑实现游戏优化和测试性能优化测试工具和流程说明引言 俄罗斯方块是一款经典的益智游戏,深受玩家喜爱。本文将介绍如何使用C#编程语言制作一个简单的俄罗斯方块小游戏,并探讨其设计与实现过程。…

【蓝桥杯日记】复盘篇二:分支结构

前言 本篇笔记主要进行复盘的内容是分支结构&#xff0c;通过学习分支结构从而更好巩固之前所学的内容。 目录 前言 目录 &#x1f34a;1.数的性质 分析&#xff1a; 知识点&#xff1a; &#x1f345;2.闰年判断 说明/提示 分析&#xff1a; 知识点&#xff1a; &am…

如何使用 Google 搜索引擎保姆级教程(附链接)

前言 需要挂梯子 一、介绍 "Google语法"通常是指在 Google 搜索引擎中使用一系列特定的搜索语法和操作符来精确地定义搜索查询。这些语法和操作符允许用户过滤和调整搜索结果&#xff0c;提高搜索的准确性。 二、安装 Google 下载 Google 浏览器 Google 官网ht…

自动化测试——selenium工具(web自动化测试)

1、自动化测试 优点&#xff1a;通过自动化测试有效减少人力的投入&#xff0c;同时提高了测试的质量和效率。 也用于回归测试。随着版本越来越多&#xff0c;版本回归的压力越来越大&#xff0c;仅仅通过人工测试 来回归所以的版本肯定是不现实的&#xff0c;所以…

如何在 Ubuntu 中安装 Microsoft Edge 浏览器

微软终于聪明了一回&#xff0c;也学会了「打不过就加入」。Microsoft Edge 浏览器的 Linux 稳定版已经于 2020 年 10 月 23 日发布&#xff0c;并提供给 Linux 发行版使用。除了官方 Edge APT 源以外&#xff0c;还提供了.deb和.rpm格式的安装包。 Microsoft Edge 基于 Chrom…

【Linux操作系统】:Linux开发工具编辑器vim

目录 Linux 软件包管理器 yum 什么是软件包 注意事项 查看软件包 如何安装软件 如何卸载软件 Linux 开发工具 Linux编辑器-vim使用 vim的基本概念 vim的基本操作 vim正常模式命令集 插入模式 插入模式切换为命令模式 移动光标 删除文字 复制 替换 撤销 跳至指…

Python爬虫解析库安装

解析库的安装 抓取网页代码之后&#xff0c;下一步就是从网页中提取信息。提取信息的方式有多种多样&#xff0c;可以使用正则来提取&#xff0c;但是写起来相对比较烦琐。这里还有许多强大的解析库&#xff0c;如 lxml、Beautiful Soup、pyquery 等。此外&#xff0c;还提供了…

备战蓝桥杯---数据结构与STL应用(基础实战篇1)

话不多说&#xff0c;直接上题&#xff1a; 当然我们可以用队列&#xff0c;但是其插入复杂度为N,总的复杂度为n^2,肯定会超时&#xff0c;于是我们可以用链表来写&#xff0c;同时把其存在数组中&#xff0c;这样节点的访问复杂度也为o(1).下面是AC代码&#xff1a; 下面我们来…

Shell中sed编辑器

1.简介 sed是一种流编辑器&#xff0c;流编辑器会在编辑器处理数据之前基于预先提供的一组规则来编辑数据流。 sed编辑器可以根据命令来处理数据流中的数据&#xff0c;这些命令要么从命令行中输入&#xff0c;要么存储在一个 命令文本文件中。 2.sed编辑器的工作流程 sed…

《元梦之星》bug层出不穷,逼得玩家研发“自救套路”?

对于bug&#xff0c;想必喜爱游戏的玩家都不会陌生&#xff0c;在各类软件或者游戏中偶尔会出现一些影响正常运行的bug&#xff0c;但是并不会引起很大的反响。大家之所以能以平常心看待是因为各大游戏或者是应用软件中的bug都会因为玩家的及时发现而进行修复&#xff0c;在出现…