强化学习原理python篇06(拓展)——DQN拓展

强化学习原理python篇06(拓展)——DQN拓展

  • n-steps
    • 代码
    • 结果
  • Double-DQN
    • 代码
    • 结果
  • Dueling-DQN
    • 代码
    • 结果
  • Ref

拓展篇参考赵世钰老师的教材和Maxim Lapan 深度学习强化学习实践(第二版),请各位结合阅读,本合集只专注于数学概念的代码实现。

n-steps

在这里插入图片描述
假设在训练开始时,顺序地完成前面的更新,前两个更新是没有用的,因为当前Q(s2, a)和Q(s2, a)是不对的,并且只包含初始的随机值。唯一有用的更新是第3个更新,它将奖励r3正确地赋给终结状态前的状态s3。
现在来完成一次又一次的更新。在第2次迭代,正确的值被赋给了Q(s2, a),但是Q(s1, a)的更新还是不对的。只有在第3次迭代时才能给所有的Q赋上正确的值。所以,即使在1步的情况下,它也需要3步才能将正确的值传播给所有的状态。

为此,修改第四步
4)将转移过程(s, a, r, s’)存储在回放缓冲区中 r 用 n 步合计展示。

代码

修改ReplayBuffer和DQN中的calculate_y_hat_and_y实现

class ReplayBuffer:def __init__(self, episode_size, replay_time):# 存取 queue episodeself.queue = []self.queue_size = episode_sizeself.replay_time = replay_timedef get_batch_queue(self, env, action_trigger, batch_size, epsilon):def insert_sample_to_queue(env):state, info = env.reset()stop = 0episode = []while True:if np.random.uniform(0, 1, 1) > epsilon:action = env.action_space.sample()else:action = action_trigger(state)next_state, reward, terminated, truncated, info = env.step(action)episode.append([state, action, next_state, reward, terminated])state = next_stateif terminated:state, info = env.reset()self.queue.append(episode)episode = []stop += 1continueif stop >= replay_time:self.queue.append(episode)episode = []breakdef init_queue(env):while True:insert_sample_to_queue(env)if len(self.queue) >= self.queue_size:breakinit_queue(env)insert_sample_to_queue(env)self.queue = self.queue[-self.queue_size :]return random.sample(self.queue, batch_size)class DQN:def __init__(self, env, obs_size, hidden_size, q_table_size):self.env = envself.net = Net(obs_size, hidden_size, q_table_size)self.tgt_net = Net(obs_size, hidden_size, q_table_size)# 更新net参数def update_net_parameters(self, update=True):self.net.load_state_dict(self.tgt_net.state_dict())def get_action_trigger(self, state):state = torch.Tensor(state)action = int(torch.argmax(self.tgt_net(state).detach()))return action# 计算y_hat_and_ydef calculate_y_hat_and_y(self, batch, gamma):# n_stepstate_space = []action_spcae = []y = []for episode in batch:random_n = int(np.random.uniform(0, len(episode), 1))episode = episode[-random_n:]state, action, next_state, reward, terminated = episode[-1]q_table_net = dqn.net(torch.Tensor(next_state)).detach()reward = reward + (1 - terminated) * gamma * float(torch.max(q_table_net))episode[-1] = state, action, next_state, reward, terminatedreward_space = [_[3] for _ in episode]r_n_steps = discount_reward(reward_space, gamma)y.append(r_n_steps)state, action, next_state, reward, terminated = episode[0]state_space.append(state)action_spcae.append(action)y_hat = self.tgt_net(torch.Tensor(np.array(state_space)))y_hat = y_hat.gather(1, torch.LongTensor(action_spcae).reshape(-1, 1))return y_hat.reshape(-1), torch.tensor(y)def predict_reward(self):state, info = env.reset()step = 0reward_space = []while True:step += 1state = torch.Tensor(state)action = int(torch.argmax(self.net(state).detach()))next_state, reward, terminated, truncated, info = env.step(action)reward_space.append(reward)state = next_stateif terminated:state, info = env.reset()continueif step >= 100:breakreturn float(np.mean(reward_space))

结果

以相同的参数进行训练
请添加图片描述
绿色的线为n-steps DQN,发现比普通DQN收敛速度显著提高。

Double-DQN

由于普通DQN是一种boostrap方法来更新自己的值,在

6)对于回放缓冲区中的每个转移过程,如果片段在此步结束,则计算目标 y = r y=r y=r,否则计算 y = r + γ m a x Q ^ ( s , a , w ) y=r+\gamma max \hat Q(s, a, w) y=r+γmaxQ^(s,a,w)

过程中max步骤,又扩大了该高估的误差影响,为了解决该问题,Deep Reinforcement Learning with Double Q-Learning论文的作者建议使用训练网络来选择动作,但是使用目标网络的Q值。所以新的目标Q值为

Q ( s t , a t ) = r t + γ Q ′ ( s t + 1 , arg max ⁡ a Q ( s t + 1 , a ) ) Q(s_t,a_t) = r_t+\gamma Q'(s_{t+1}, \argmax \limits_{a} Q(s_{t+1}, a)) Q(st,at)=rt+γQ(st+1,aargmaxQ(st+1,a))

代码

修改第六步

class DQN:def __init__(self, env, obs_size, hidden_size, q_table_size):self.env = envself.net = Net(obs_size, hidden_size, q_table_size)self.tgt_net = Net(obs_size, hidden_size, q_table_size)# 更新net参数def update_net_parameters(self, update=True):self.net.load_state_dict(self.tgt_net.state_dict())def get_action_trigger(self, state):state = torch.Tensor(state)action = int(torch.argmax(self.tgt_net(state).detach()))return action# 计算y_hat_and_ydef calculate_y_hat_and_y(self, batch, gamma):y = []action_sapce = []state_sapce = []## for state, action, next_state, reward, terminated in batch:q_table_net = self.net(torch.Tensor(next_state)).detach()## double DQN tgt_net_action = self.get_action_trigger(next_state)y.append(reward + (1 - terminated) * gamma * float(q_table_net[tgt_net_action]))action_sapce.append(action)state_sapce.append(state)y_hat = self.tgt_net(torch.Tensor(np.array(state_sapce)))y_hat = y_hat.gather(1, torch.LongTensor(action_sapce).reshape(-1, 1))return y_hat.reshape(-1), torch.tensor(y)def predict_reward(self):state, info = env.reset()step = 0reward_space = []while True:step += 1state = torch.Tensor(state)action = int(torch.argmax(self.net(state).detach()))next_state, reward, terminated, truncated, info = env.step(action)reward_space.append(reward)state = next_stateif terminated:state, info = env.reset()continueif step >= 100:breakreturn float(np.mean(reward_space))

结果

请添加图片描述

Dueling-DQN

这个对DQN的改进是在2015年的“Dueling Network Architectures for Deep Reinforcement Learning”论文中提出的。

该论文的核心发现是,神经网络所试图逼近的Q值Q(s, a)可以被分成两个量:状态的价值V(s),以及这个状态下的动作优势A(s, a)。

在同一个状态下,所有动作的优势值之和为,因为所有动作的动作价值的期望就是这个状态的状态价值。

这种约束可以通过几种方法来实施,例如,通过损失函数。但是在论文中,作者提出一个非常巧妙的解决方案,就是从神经网络的Q表达式中减去优势值的平均值,它有效地将优势值的平均值趋于0。

Q ( s , a ) = V ( a ) + A ( s , a ) − 1 n ∑ a ′ A ( s , a ′ ) Q(s,a) = V(a)+A(s,a)-\frac{1}{n}\sum _{a'}A(s,a') Q(s,a)=V(a)+A(s,a)n1aA(s,a)

这使得对基础DQN的改动变得很
简单:为了将其转换成Dueling DQN,只需要改变神经网络的结构,而
不需要影响其他部分的实现。

代码

class DuelingNet(nn.Module):def __init__(self, obs_size, hidden_size, q_table_size):super().__init__()# 动作优势A(s, a)self.a_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, q_table_size),)# 价值V(s)self.v_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, 1),)def forward(self, state):if len(torch.Tensor(state).size())==1:state = state.reshape(1,-1)v = self.v_net(state)a = self.a_net(state)mean_a = a.mean(dim=1,keepdim=True)# torch.mean(a, axis=1).reshape(-1, 1)return v + a - mean_a  

结果

请添加图片描述

Ref

[1] Mathematical Foundations of Reinforcement Learning,Shiyu Zhao
[2] 深度学习强化学习实践(第二版),Maxim Lapan

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/655847.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】vue3的watch

尚硅谷Vue2.0Vue3.0全套教程丨vuejs从入门到精通 课程 P152节 笔记: 情况一:监视ref所定义的一个响应式数据 情况二:监视ref所定义的多个响应式数据 这两种情况比较简单,正常写就ok: 情况三:监视reactive所…

LeetCode 2808.使循环数组所有元素相等的最少秒数

【LetMeFly】2808.使循环数组所有元素相等的最少秒数 力扣题目链接:https://leetcode.cn/problems/minimum-seconds-to-equalize-a-circular-array/ 给你一个下标从 0 开始长度为 n 的数组 nums 。 每一秒,你可以对数组执行以下操作: 对于…

把 matlab 公式输出成 latex 公式形式

问题 latex 进行符号计算后,想直接把 matlab 中变量代表的公式结果输出成 latex 形式。 这样可以直接 复制到 latex 中,不需要手打公式了。 方法 matlab 函数 latex 可以实现上述功能,但最好是 使用 simpify(expand(~)) 进行化简 str_Jac…

关机恶搞小程序

1. system("shutdown")的介绍 当system函数的参数是"shutdown"时,它将会执行系统的关机命令。 具体来说,system("shutdown")的功能是向操作系统发送一个关机信号,请求关闭计算机。这将触发操作系统执行一系列…

MacOS安装反编译工具JD-GUI以及解决无法打开的问题

目录 一.下载地址 二.安装 三.问题 四.解决办法 1.显示包内容 2.找到Contents/MacOS/universalJavaApplicationStub.sh 3.修改sh文件 4.保存后再次打开即可 一.下载地址 Java Decompiler 二.安装 将下载下来的 jd-gui-osx-1.6.6.tar 解压,然后将 JD-GUI.a…

Hadoop3.x基础(1)

来源:B站尚硅谷 这里写目录标题 大数据概论大数据概念大数据特点(4V)大数据应用场景 Hadoop概述Hadoop是什么Hadoop发展历史(了解)Hadoop三大发行版本(了解)Hadoop优势(4高)Hadoop组成&#xf…

IntelliJ创建一个springboot工程

安装jdk mac教程 windows教程 安装maven mac教程 windows教程 建议: 在本地磁盘新建一个文件夹叫maven,然后把下载的maven安装到这里。在后续的IntelliJ操作中,配置maven的settings.xml和repository地址为这个目录下的地址。 创建sprin…

【架构】Docker实现集群主从缩容【案例4/4】

实现集群主从缩容【4/4】 接上一节,在当前机器为4主4从的架构上,减缩容量为3主3从架构。即实现删除6387和6388. 示意图如下: 第一步:查看集群情况(第一次) redis-cli --cluster check 127.0.0.1:6387roo…

四:C语言-条件分支语句

四:条件分支语句 C语言是结构化的程序设计语言,这里的结构指的是顺序结构、选择结构、循环结构。 我们可以使用if、switch实现分支结构;使用for、while、do while实现循环结构 1.if语句: 语法格式: if(表达式)代码块…

【Leetcode热题100】

哈希 1. 两数之和 class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {//构建hash表 unordered_map<int,int>hash;//遍历每个元素数据for(int i 0 ; i < nums.size();i){//目标 - 当前数据 与当前设备匹配的元素数…

c# Get方式调用WebAPI,WebService等接口

/// <summary> /// 利用WebRequest/WebResponse进行WebService调用的类 /// </summary> public class WebServiceHelper {//<webServices>// <protocols>// <add name"HttpGet"/>// <add name"HttpPost"/>// …

【Linux】fork()函数

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

Docker 安装篇(CentOS)

Docker社区版 Docker从1.13版本之后采用时间线的方式作为版本号&#xff0c;分为社区版CE和企业版EE。 社区版是免费提供给个人开发者和小型团体使用的&#xff0c;企业版会提供额外的收费服务&#xff0c;比如经过官方测试认证过的基础设施、容器、插件等。 1、Docker 要求 C…

深度强化学习(王树森)笔记08

深度强化学习&#xff08;DRL&#xff09; 本文是学习笔记&#xff0c;如有侵权&#xff0c;请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接&#xff1a;https://github.com/wangshusen/DRL 源代码链接&#xff1a;https://github.c…

校园圈子论坛系统--APP小程序H5,前后端源码交付,支持二开!uniAPP+PHP书写!

随着移动互联网的快速发展&#xff0c;校园社交成为了大学生们日常生活中重要的一部分。为了方便校园内学生的交流和互动&#xff0c;校园社交小程序逐渐走入人们的视野。本文将探讨校园社交小程序的开发以及其带来的益处。 校园社交小程序的开发涉及许多技术和设计方面。首先&…

安装elasticsearch、kibana、IK分词器

1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器&#xff0c;因此需要让es和kibana容器互联。这里先创建一个网络&#xff1a; docker network create es-net 1.2.加载镜像 这里我们采用elasticsearch的7.12.1版本的镜像&#xff0c;这个镜像体积非常大&#xff0…

7、Json文件的操作总结【robot framework】

1、JSONLibrary简介 Robot Framework 是一种通用的自动化测试框架&#xff0c;它支持使用关键字驱动的测试&#xff0c;并且易于学习和使用。Robot Framework 提供了丰富的标准库&#xff0c;而 JSONLibrary 就是其中之一&#xff0c;用于处理 JSON 数据。 安装 JSONLibrary 在…

测试面试题常见题

文章目录 功能测试一个完整的测试计划应该包含哪些内容一个完整的测试用例包含哪些内容&#xff1f;什么时候需要发测试报告&#xff1f;一份测试报告应该包含哪些内容&#xff1f;一个完整的缺陷报告应该包含哪些内容&#xff1f;简述等价类划分法并举例针对具体场景的测试用例…

提升工作效率,畅享便捷PDF编辑体验——Adobe Acrobat Pro DC 2023

作为全球领先的PDF编辑软件&#xff0c;Adobe Acrobat Pro DC 2023将为您带来前所未有的PDF编辑体验。无论您是个人用户还是企业用户&#xff0c;Adobe Acrobat Pro DC 2023将成为您提高工作效率、简化工作流程的得力助手。 一、全面编辑功能 Adobe Acrobat Pro DC 2023提供了…

代码随想录 Leetcode110.平衡二叉树

题目&#xff1a; 代码(首刷看解析 2024年1月30日&#xff09;&#xff1a; class Solution { public:int depth(TreeNode* root) {if (root nullptr) return 0;int leftHeight depth(root->left);if (leftHeight -1) return -1;int rightHeight depth(root->right)…