强化学习原理python篇06(拓展)——DQN拓展

强化学习原理python篇06(拓展)——DQN拓展

  • n-steps
    • 代码
    • 结果
  • Double-DQN
    • 代码
    • 结果
  • Dueling-DQN
    • 代码
    • 结果
  • Ref

拓展篇参考赵世钰老师的教材和Maxim Lapan 深度学习强化学习实践(第二版),请各位结合阅读,本合集只专注于数学概念的代码实现。

n-steps

在这里插入图片描述
假设在训练开始时,顺序地完成前面的更新,前两个更新是没有用的,因为当前Q(s2, a)和Q(s2, a)是不对的,并且只包含初始的随机值。唯一有用的更新是第3个更新,它将奖励r3正确地赋给终结状态前的状态s3。
现在来完成一次又一次的更新。在第2次迭代,正确的值被赋给了Q(s2, a),但是Q(s1, a)的更新还是不对的。只有在第3次迭代时才能给所有的Q赋上正确的值。所以,即使在1步的情况下,它也需要3步才能将正确的值传播给所有的状态。

为此,修改第四步
4)将转移过程(s, a, r, s’)存储在回放缓冲区中 r 用 n 步合计展示。

代码

修改ReplayBuffer和DQN中的calculate_y_hat_and_y实现

class ReplayBuffer:def __init__(self, episode_size, replay_time):# 存取 queue episodeself.queue = []self.queue_size = episode_sizeself.replay_time = replay_timedef get_batch_queue(self, env, action_trigger, batch_size, epsilon):def insert_sample_to_queue(env):state, info = env.reset()stop = 0episode = []while True:if np.random.uniform(0, 1, 1) > epsilon:action = env.action_space.sample()else:action = action_trigger(state)next_state, reward, terminated, truncated, info = env.step(action)episode.append([state, action, next_state, reward, terminated])state = next_stateif terminated:state, info = env.reset()self.queue.append(episode)episode = []stop += 1continueif stop >= replay_time:self.queue.append(episode)episode = []breakdef init_queue(env):while True:insert_sample_to_queue(env)if len(self.queue) >= self.queue_size:breakinit_queue(env)insert_sample_to_queue(env)self.queue = self.queue[-self.queue_size :]return random.sample(self.queue, batch_size)class DQN:def __init__(self, env, obs_size, hidden_size, q_table_size):self.env = envself.net = Net(obs_size, hidden_size, q_table_size)self.tgt_net = Net(obs_size, hidden_size, q_table_size)# 更新net参数def update_net_parameters(self, update=True):self.net.load_state_dict(self.tgt_net.state_dict())def get_action_trigger(self, state):state = torch.Tensor(state)action = int(torch.argmax(self.tgt_net(state).detach()))return action# 计算y_hat_and_ydef calculate_y_hat_and_y(self, batch, gamma):# n_stepstate_space = []action_spcae = []y = []for episode in batch:random_n = int(np.random.uniform(0, len(episode), 1))episode = episode[-random_n:]state, action, next_state, reward, terminated = episode[-1]q_table_net = dqn.net(torch.Tensor(next_state)).detach()reward = reward + (1 - terminated) * gamma * float(torch.max(q_table_net))episode[-1] = state, action, next_state, reward, terminatedreward_space = [_[3] for _ in episode]r_n_steps = discount_reward(reward_space, gamma)y.append(r_n_steps)state, action, next_state, reward, terminated = episode[0]state_space.append(state)action_spcae.append(action)y_hat = self.tgt_net(torch.Tensor(np.array(state_space)))y_hat = y_hat.gather(1, torch.LongTensor(action_spcae).reshape(-1, 1))return y_hat.reshape(-1), torch.tensor(y)def predict_reward(self):state, info = env.reset()step = 0reward_space = []while True:step += 1state = torch.Tensor(state)action = int(torch.argmax(self.net(state).detach()))next_state, reward, terminated, truncated, info = env.step(action)reward_space.append(reward)state = next_stateif terminated:state, info = env.reset()continueif step >= 100:breakreturn float(np.mean(reward_space))

结果

以相同的参数进行训练
请添加图片描述
绿色的线为n-steps DQN,发现比普通DQN收敛速度显著提高。

Double-DQN

由于普通DQN是一种boostrap方法来更新自己的值,在

6)对于回放缓冲区中的每个转移过程,如果片段在此步结束,则计算目标 y = r y=r y=r,否则计算 y = r + γ m a x Q ^ ( s , a , w ) y=r+\gamma max \hat Q(s, a, w) y=r+γmaxQ^(s,a,w)

过程中max步骤,又扩大了该高估的误差影响,为了解决该问题,Deep Reinforcement Learning with Double Q-Learning论文的作者建议使用训练网络来选择动作,但是使用目标网络的Q值。所以新的目标Q值为

Q ( s t , a t ) = r t + γ Q ′ ( s t + 1 , arg max ⁡ a Q ( s t + 1 , a ) ) Q(s_t,a_t) = r_t+\gamma Q'(s_{t+1}, \argmax \limits_{a} Q(s_{t+1}, a)) Q(st,at)=rt+γQ(st+1,aargmaxQ(st+1,a))

代码

修改第六步

class DQN:def __init__(self, env, obs_size, hidden_size, q_table_size):self.env = envself.net = Net(obs_size, hidden_size, q_table_size)self.tgt_net = Net(obs_size, hidden_size, q_table_size)# 更新net参数def update_net_parameters(self, update=True):self.net.load_state_dict(self.tgt_net.state_dict())def get_action_trigger(self, state):state = torch.Tensor(state)action = int(torch.argmax(self.tgt_net(state).detach()))return action# 计算y_hat_and_ydef calculate_y_hat_and_y(self, batch, gamma):y = []action_sapce = []state_sapce = []## for state, action, next_state, reward, terminated in batch:q_table_net = self.net(torch.Tensor(next_state)).detach()## double DQN tgt_net_action = self.get_action_trigger(next_state)y.append(reward + (1 - terminated) * gamma * float(q_table_net[tgt_net_action]))action_sapce.append(action)state_sapce.append(state)y_hat = self.tgt_net(torch.Tensor(np.array(state_sapce)))y_hat = y_hat.gather(1, torch.LongTensor(action_sapce).reshape(-1, 1))return y_hat.reshape(-1), torch.tensor(y)def predict_reward(self):state, info = env.reset()step = 0reward_space = []while True:step += 1state = torch.Tensor(state)action = int(torch.argmax(self.net(state).detach()))next_state, reward, terminated, truncated, info = env.step(action)reward_space.append(reward)state = next_stateif terminated:state, info = env.reset()continueif step >= 100:breakreturn float(np.mean(reward_space))

结果

请添加图片描述

Dueling-DQN

这个对DQN的改进是在2015年的“Dueling Network Architectures for Deep Reinforcement Learning”论文中提出的。

该论文的核心发现是,神经网络所试图逼近的Q值Q(s, a)可以被分成两个量:状态的价值V(s),以及这个状态下的动作优势A(s, a)。

在同一个状态下,所有动作的优势值之和为,因为所有动作的动作价值的期望就是这个状态的状态价值。

这种约束可以通过几种方法来实施,例如,通过损失函数。但是在论文中,作者提出一个非常巧妙的解决方案,就是从神经网络的Q表达式中减去优势值的平均值,它有效地将优势值的平均值趋于0。

Q ( s , a ) = V ( a ) + A ( s , a ) − 1 n ∑ a ′ A ( s , a ′ ) Q(s,a) = V(a)+A(s,a)-\frac{1}{n}\sum _{a'}A(s,a') Q(s,a)=V(a)+A(s,a)n1aA(s,a)

这使得对基础DQN的改动变得很
简单:为了将其转换成Dueling DQN,只需要改变神经网络的结构,而
不需要影响其他部分的实现。

代码

class DuelingNet(nn.Module):def __init__(self, obs_size, hidden_size, q_table_size):super().__init__()# 动作优势A(s, a)self.a_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, q_table_size),)# 价值V(s)self.v_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, 1),)def forward(self, state):if len(torch.Tensor(state).size())==1:state = state.reshape(1,-1)v = self.v_net(state)a = self.a_net(state)mean_a = a.mean(dim=1,keepdim=True)# torch.mean(a, axis=1).reshape(-1, 1)return v + a - mean_a  

结果

请添加图片描述

Ref

[1] Mathematical Foundations of Reinforcement Learning,Shiyu Zhao
[2] 深度学习强化学习实践(第二版),Maxim Lapan

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/655847.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】vue3的watch

尚硅谷Vue2.0Vue3.0全套教程丨vuejs从入门到精通 课程 P152节 笔记: 情况一:监视ref所定义的一个响应式数据 情况二:监视ref所定义的多个响应式数据 这两种情况比较简单,正常写就ok: 情况三:监视reactive所…

关机恶搞小程序

1. system("shutdown")的介绍 当system函数的参数是"shutdown"时,它将会执行系统的关机命令。 具体来说,system("shutdown")的功能是向操作系统发送一个关机信号,请求关闭计算机。这将触发操作系统执行一系列…

MacOS安装反编译工具JD-GUI以及解决无法打开的问题

目录 一.下载地址 二.安装 三.问题 四.解决办法 1.显示包内容 2.找到Contents/MacOS/universalJavaApplicationStub.sh 3.修改sh文件 4.保存后再次打开即可 一.下载地址 Java Decompiler 二.安装 将下载下来的 jd-gui-osx-1.6.6.tar 解压,然后将 JD-GUI.a…

Hadoop3.x基础(1)

来源:B站尚硅谷 这里写目录标题 大数据概论大数据概念大数据特点(4V)大数据应用场景 Hadoop概述Hadoop是什么Hadoop发展历史(了解)Hadoop三大发行版本(了解)Hadoop优势(4高)Hadoop组成&#xf…

IntelliJ创建一个springboot工程

安装jdk mac教程 windows教程 安装maven mac教程 windows教程 建议: 在本地磁盘新建一个文件夹叫maven,然后把下载的maven安装到这里。在后续的IntelliJ操作中,配置maven的settings.xml和repository地址为这个目录下的地址。 创建sprin…

【架构】Docker实现集群主从缩容【案例4/4】

实现集群主从缩容【4/4】 接上一节,在当前机器为4主4从的架构上,减缩容量为3主3从架构。即实现删除6387和6388. 示意图如下: 第一步:查看集群情况(第一次) redis-cli --cluster check 127.0.0.1:6387roo…

c# Get方式调用WebAPI,WebService等接口

/// <summary> /// 利用WebRequest/WebResponse进行WebService调用的类 /// </summary> public class WebServiceHelper {//<webServices>// <protocols>// <add name"HttpGet"/>// <add name"HttpPost"/>// …

【Linux】fork()函数

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

Docker 安装篇(CentOS)

Docker社区版 Docker从1.13版本之后采用时间线的方式作为版本号&#xff0c;分为社区版CE和企业版EE。 社区版是免费提供给个人开发者和小型团体使用的&#xff0c;企业版会提供额外的收费服务&#xff0c;比如经过官方测试认证过的基础设施、容器、插件等。 1、Docker 要求 C…

深度强化学习(王树森)笔记08

深度强化学习&#xff08;DRL&#xff09; 本文是学习笔记&#xff0c;如有侵权&#xff0c;请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接&#xff1a;https://github.com/wangshusen/DRL 源代码链接&#xff1a;https://github.c…

校园圈子论坛系统--APP小程序H5,前后端源码交付,支持二开!uniAPP+PHP书写!

随着移动互联网的快速发展&#xff0c;校园社交成为了大学生们日常生活中重要的一部分。为了方便校园内学生的交流和互动&#xff0c;校园社交小程序逐渐走入人们的视野。本文将探讨校园社交小程序的开发以及其带来的益处。 校园社交小程序的开发涉及许多技术和设计方面。首先&…

安装elasticsearch、kibana、IK分词器

1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器&#xff0c;因此需要让es和kibana容器互联。这里先创建一个网络&#xff1a; docker network create es-net 1.2.加载镜像 这里我们采用elasticsearch的7.12.1版本的镜像&#xff0c;这个镜像体积非常大&#xff0…

提升工作效率,畅享便捷PDF编辑体验——Adobe Acrobat Pro DC 2023

作为全球领先的PDF编辑软件&#xff0c;Adobe Acrobat Pro DC 2023将为您带来前所未有的PDF编辑体验。无论您是个人用户还是企业用户&#xff0c;Adobe Acrobat Pro DC 2023将成为您提高工作效率、简化工作流程的得力助手。 一、全面编辑功能 Adobe Acrobat Pro DC 2023提供了…

代码随想录 Leetcode110.平衡二叉树

题目&#xff1a; 代码(首刷看解析 2024年1月30日&#xff09;&#xff1a; class Solution { public:int depth(TreeNode* root) {if (root nullptr) return 0;int leftHeight depth(root->left);if (leftHeight -1) return -1;int rightHeight depth(root->right)…

打造高效经营:开发连锁餐饮管理系统的技术深度解析

为了适应市场的快速发展和提高经营效率&#xff0c;许多连锁餐饮企业纷纷投入开发连锁餐饮管理系统。 一、数字化转型的动力 传统的餐饮经营面临着诸多挑战&#xff0c;如订单管理、库存控制、人力资源等问题。在这样的背景下&#xff0c;连锁餐饮企业迫切需要一种全面而高效…

Flask 入门2

1. 在上一节中&#xff0c;我们使用到了静态路由&#xff0c;即一个路由规则对应一个 URL。而在实际应用中&#xff0c;更多使用的则是动态路由&#xff0c;它的 URL是可变的。 2. 定义一个很常见的路由地址 app.route(/user/<username>) def user(username):return U…

SQL Server ISO镜像文件安装

参考&#xff1a;Sql Server ISO镜像文件安装指南_sqlserveriso文件怎么安装-CSDN博客 参考文件中的步骤基本相同&#xff0c;注意两点 1、尽量安装在D盘&#xff0c;有些组件默认必须安装在C盘&#xff0c;有些会报没有目录的情况 需要在D盘创建目录。 2、我没有windows本地…

计网Lesson11 - 虚拟机网络环境及socket概述

文章目录 虚拟机的简述socket概述 虚拟机的简述 放张图在这&#xff0c;根本没明白是啥对啥&#xff0c;以后学了Linux再来吧 &#x1f626; socket概述 s o c k e t socket socket 是一种用于应用层的用户态与应用层以下的内核态交互的工具&#xff0c;本意为“插座”。 也就是…

HarmonyOS NEXT 星河版项目案例

参考代码&#xff1a;HeimaHealthy: 鸿蒙项目案例练习 (gitee.com) 1.欢迎页面 Entry Component struct WelcomePage {State message: string Hello Worldbuild() {Column({space: 10}) {Row() {// 1.中央slogonImage($r(app.media.home_slogan)).width(260)}.layoutWeight(…

FL Studio21.2.2中文完整版 适合专业创作者

FL Studio 简称FL&#xff0c;全称&#xff1a;Fruity Loops Studio&#xff0c;因此国人习惯叫它"水果"。目前版本是FL Studio2024&#xff0c;它让你的计算机就像是全功能的录音室&#xff0c;大混音盘&#xff0c;非常先进的制作工具&#xff0c;让你的音乐突破想…