12.1 关键点提取------Harris原理及代码

一、原理

该原理看了Harris角点检测原理详解-CSDN博客的博文,在这里写一遍是作为笔记,以供后参考。

1.什么是角点

       角点就是图片中的一些突变的点,如下图所示。图中的点都是菱角分明的一些凸出来或凹进去的点。

我们可以直观的概括下角点所具有的特征:

>轮廓之间的交点;

>对于同一场景,即使视角发生变化,通常具备稳定性质的特征;

>该点附近区域的像素点无论在梯度方向上还是其梯度幅值上有着较大变化;

2. 角点检测算法基本思想是什么?

       算法基本思想是使用一个固定窗口在图像上进行任意方向上的滑动,比较滑动前与滑动后两种情况,窗口中的像素灰度变化程度,如果存在任意方向上的滑动,都有着较大灰度变化,那么我们可以认为该窗口中存在角点。

3.如何用数学方法去刻画角点特征?

当窗口发生[u,v]移动时,那么滑动前与滑动后对应的窗口中的像素点灰度变化描述如下:

公式解释:

>[u,v]是窗口的偏移量

>(x,y)是窗口内所对应的像素坐标位置,窗口有多大,就有多少个位置

>w(x,y)是窗口函数,最简单情形就是窗口内的所有像素所对应的w权重系数均为1。但有时候,我们会将w(x,y)函数设定为以窗口中心为原点的二元正态分布。如果窗口中心点是角点时,移动前与移动后,该点的灰度变化应该最为剧烈,所以该点权重系数可以设定大些,表示窗口移动时,该点在灰度变化贡献较大;而离窗口中心(角点)较远的点,这些点的灰度变化几近平缓,这些点的权重系数,可以设定小点,以示该点对灰度变化贡献较小,那么我们自然想到使用二元高斯函数来表示窗口函数,这里仅是个人理解,大家可以参考下。

所以通常窗口函数有如下两种形式:

         根据上述表达式,当窗口处在平坦区域上滑动,可以想象的到,灰度不会发生变化,那么E(u,v) = 0;如果窗口处在比纹理比较丰富的区域上滑动,那么灰度变化会很大。算法最终思想就是计算灰度发生较大变化时所对应的位置,当然这个较大是指针任意方向上的滑动,并非单指某个方向。

4.E(u,v)表达式进一步演化

首先需要了解泰勒公式,任何一个函数表达式,均可有泰勒公式进行展开,以逼近原函数,我们可以对下面函数进行一阶展开(如果对泰勒公式忘记了,可以翻翻本科所学的高等数学)

那么,

所以E(u,v)表达式可以更新为:

这里矩阵M为,

5.矩阵M的关键性

难道我们是直接求上述的E(u,v)值来判断角点吗?Harris角点检测并没有这样做,而是通过对窗口内的每个像素的x方向上的梯度与y方向上的梯度进行统计分析。这里以Ix和Iy为坐标轴,因此每个像素的梯度坐标可以表示成(Ix,Iy)。针对平坦区域,边缘区域以及角点区域三种情形进行分析:

下图是对这三种情况窗口中的对应像素的梯度分布进行绘制:

如果使用椭圆进行数据集表示,则绘制图示如下:

不知道大家有没有注意到这三种区域的特点,平坦区域上的每个像素点所对应的(IX,IY)坐标分布在原点附近,其实也很好理解,针对平坦区域的像素点,他们的梯度方向虽然各异,但是其幅值都不是很大,所以均聚集在原点附近;边缘区域有一坐标轴分布较散,至于是哪一个坐标上的数据分布较散不能一概而论,这要视边缘在图像上的具体位置而定,如果边缘是水平或者垂直方向,那么Iy轴方向或者Ix方向上的数据分布就比较散;角点区域的x、y方向上的梯度分布都比较散。我们是不是可以根据这些特征来判断哪些区域存在角点呢?

虽然我们利用E(u,v)来描述角点的基本思想,然而最终我们仅仅使用的是矩阵M。让我们看看矩阵M形式,是不是跟协方差矩阵形式很像,像归像,但是还是有些不同,哪儿不同?一般协方差矩阵对应维的随机变量需要减去该维随机变量的均值,但矩阵M中并没有这样做,所以在矩阵M里,我们先进行各维的均值化处理,那么各维所对应的随机变量的均值为0,协方差矩阵就大大简化了,简化的最终结果就是矩阵M,是否明白了?我们的目的是分析数据的主要成分,相信了解PCA原理的,应该都了解均值化的作用。

如果我们对协方差矩阵M进行对角化,很明显,特征值就是主分量上的方差,这点大家应该明白吧?不明白的话可以复习下PCA原理。如果存在两个主分量所对应的特征值都比较大,说明什么? 像素点的梯度分布比较散,梯度变化程度比较大,符合角点在窗口区域的特点;如果是平坦区域,那么像素点的梯度所构成的点集比较集中在原点附近,因为窗口区域内的像素点的梯度幅值非常小,此时矩阵M的对角化的两个特征值比较小;如果是边缘区域,在计算像素点的x、y方向上的梯度时,边缘上的像素点的某个方向的梯度幅值变化比较明显,另一个方向上的梯度幅值变化较弱,其余部分的点都还是集中原点附近,这样M对角化后的两个特征值理论应该是一个比较大,一个比较小,当然对于边缘这种情况,可能是呈45°的边缘,致使计算出的特征值并不是都特别的大,总之跟含有角点的窗口的分布情况还是不同的。

注:M为协方差矩阵,需要大家自己去理解下,窗口中的像素集构成一个矩阵(2*n,假设这里有n个像素点),使用该矩阵乘以该矩阵的转置,即是协方差矩阵

因此可以得出下列结论:

>特征值都比较大时,即窗口中含有角点

>特征值一个较大,一个较小,窗口中含有边缘

>特征值都比较小,窗口处在平坦区域

6. 如何度量角点响应?

通常用下面表达式进行度量:

其中k是常量,一般取值为0.04~0.06,这个参数仅仅是这个函数的一个系数,它的存在只是调节函数的形状而已。

但是为什么会使用这样的表达式呢?一下子是不是感觉很难理解?其实也不难理解,函数表达式一旦出来,我们就可以绘制它的图像,而这个函数图形正好满足上面几个区域的特征。 通过绘制函数图像,直观上更能理解。绘制的R函数图像如下:

二、代码实现

1.C++代码实现

#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL);
VTK_MODULE_INIT(vtkInteractionStyle);
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/common/io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/time.h>
#include <pcl/keypoints/harris_3D.h>//harris
using namespace pcl;int main(int argc, char **argv)
{//读取点云pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ>("test.pcd", *cloud) == -1){PCL_ERROR("Cloudn't read file!");system("pause");return -1;}//Harris关键点提取float r_normal;float r_keypoint;r_normal = 0.6;r_keypoint = 0.8;typedef pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZI> ColorHandlerT3;pcl::PointCloud<pcl::PointXYZI>::Ptr Harris_keypoints(new pcl::PointCloud<pcl::PointXYZI>());    pcl::HarrisKeypoint3D<pcl::PointXYZ,pcl::PointXYZI,pcl::Normal>* harris_detector = new pcl::HarrisKeypoint3D<pcl::PointXYZ, pcl::PointXYZI, pcl::Normal>;harris_detector->setRadius(r_normal);         //设置法向量估算的半径harris_detector->setRadiusSearch(r_keypoint);
//设置关键点估计的近邻搜索半径harris_detector->setInputCloud(cloud);harris_detector->compute(*Harris_keypoints);cout<< "Harris_keypoints的大小是" <<Harris_keypoints->size()<< endl;//显示harris关键点pcl::visualization::PCLVisualizer viewer("clouds");viewer.setBackgroundColor(255,255, 255);    viewer.addPointCloud(Harris_keypoints,ColorHandlerT3(Harris_keypoints,0.0, 0.0, 255.0),
"Harris_keypoints");    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE,8, "Harris_keypoints");viewer.addPointCloud(cloud,"cloud"); viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR,0,0, 0, "cloud");  viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE,
2, "cloud");viewer.setCameraPosition(0,0, 0, 0, 156, -20, 0, 0, 1, 0);//设置相机位置,焦点,方向viewer.spin();return 0;
}

2.python代码实现

import cv2
import numpy as np
import matplotlib
import math
from matplotlib import pyplot as plt  #根据一阶锐化算子,求x,y的梯度,显示锐化图像
#读取图片
filename = 'girl.jpg'
tu = cv2.imread(filename)#转换为灰度图
gray = cv2.cvtColor(tu, cv2.COLOR_RGB2GRAY)#获取图像属性
print '获取图像大小: '
print gray.shape
print '\n'#打印数组gray
print '灰度图像数组:\n %s \n \n' % (gray)#输出n*n的数组
#print gray[:2,:2]#转换为矩阵
m = np.matrix(gray)#计算x方向的梯度的函数(水平方向锐化算子)
delta_h = m
def grad_x(h):a = int(h.shape[0])b = int(h.shape[1])for i in range(a):for j in range(b):if i-1>=0 and i+1<a and j-1>=0 and j+1<b:c = abs(int(h[i-1,j-1]) - int(h[i+1,j-1]) + 2*(int(h[i-1,j]) - int(h[i+1,j])) + int(h[i-1,j+1]) - int(h[i+1,j+1]))
#                print cif c>255:
#                    print cc = 255delta_h[i,j] = celse:delta_h[i,j] = 0print 'x方向的梯度:\n %s \n' %delta_hreturn delta_h##计算y方向的梯度的函数(水平方向锐化算子)
def grad_y(h):a = int(h.shape[0])b = int(h.shape[1])for i in range(a):for j in range(b):if i-1>=0 and i+1<a and j-1>=0 and j+1<b:c = abs(int(h[i-1,j-1]) - int(h[i-1,j+1]) + 2*(int(h[i,j-1]) - int(h[i,j+1])) + (int(h[i+1,j-1]) - int(h[i+1,j+1])))  #注意像素不能直接计算,需要转化为整型
#                print cif c > 255:c = 255delta_h[i,j] = celse:delta_h[i,j] = 0print 'y方向的梯度:\n %s \n' %delta_hreturn delta_h# Laplace 算子  
img_laplace = cv2.Laplacian(gray, cv2.CV_64F, ksize=3)  dx = np.array(grad_x(gray))
dy = np.array(grad_y(gray))#dxy = dx + dy
#print 'dxy1:'
#print dxyA = dx * dx
B = dy * dy 
C = dx * dyprint A
print B
print CA1 = A
B1 = B
C1 = CA1 = cv2.GaussianBlur(A1,(3,3),1.5)
B1 = cv2.GaussianBlur(B1,(3,3),1.5)
C1 = cv2.GaussianBlur(C1,(3,3),1.5)print A1
print B1
print C1a = int(gray.shape[0])
b = int(gray.shape[1])R = np.zeros(gray.shape)
for i in range(a):for j in range(b):M = [[A1[i,j],C1[i,j]],[C1[i,j],B1[i,j]]]R[i,j] = np.linalg.det(M) - 0.06 * (np.trace(M)) * (np.trace(M))print Rcv2.namedWindow('R',cv2.WINDOW_NORMAL)
cv2.imshow('R',R)cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/655787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

复杂SQL治理实践 | 京东物流技术团队

一、前言 软件在持续的开发和维护过程中&#xff0c;会不断添加新功能和修复旧的缺陷&#xff0c;这往往伴随着代码的快速增长和复杂性的提升。若代码库没有得到良好的管理和重构&#xff0c;就可能积累大量的技术债务&#xff0c;包括不一致的设计、冗余代码、过时的库和框架…

Go语言中HTTP代理的请求和响应过程

在Go语言中&#xff0c;HTTP代理的实现涉及对请求和响应的拦截、转发和处理。下面将详细介绍这个过程。 请求过程&#xff1a; 客户端发起请求&#xff1a;客户端&#xff08;例如浏览器或其他应用程序&#xff09;发送HTTP请求到代理服务器。建立连接&#xff1a;代理服务器…

C++核心编程:类和对象 笔记

4.类和对象 C面向对象的三大特性为:封装,继承,多态C认为万事万物都皆为对象&#xff0c;对象上有其属性和行为 例如&#xff1a; 人可以作为对象&#xff0c;属性有姓名、年龄、身高、体重...,行为有走、跑、跳、说话...车可以作为对象&#xff0c;属性有轮胎、方向盘、车灯…

Django配置websocket时的错误解决

基于移动群智感知的网络图谱构建系统需要手机app不断上传数据到服务器并把数据推到前端标记在百度地图上&#xff0c;由于众多手机向同一服务器发送数据&#xff0c;如果使用长轮询&#xff0c;则实时性差、延迟高且服务器的负载过大&#xff0c;而使用websocket则有更好的性能…

对于JDK动态代理和Cglib动态代理,如何分析和实现?

JDK动态代理和Cglib动态代理都是Java中常用的动态代理实现方式&#xff0c;它们各有特点和应用场景&#xff1a; JDK动态代理&#xff1a;JDK动态代理是基于接口的代理方式。它使用java.lang.reflect.Proxy类和java.lang.reflect.InvocationHandler接口来创建代理对象。在这种方…

go基础-垃圾回收+混合写屏障GC全分析

垃圾回收(Garbage Collection&#xff0c;简称GC)是编程语言中提供的自动的内存管理机制&#xff0c;自动释放不需要的对象&#xff0c;让出存储器资源&#xff0c;无需程序员手动执行。 Golang中的垃圾回收主要应用三色标记法&#xff0c;GC过程和其他用户goroutine可并发运行…

[Tcpdump] 网络抓包工具使用教程

往期回顾 海思 tcpdump 移植开发详解海思 tcpdump 移植开发详解 前言 上一节&#xff0c;我们已经讲解了在海思平台如何基于静态库生成 tcpdump 工具&#xff0c;本节将作为上一节的拓展内容。 一、tcpdump 简介 「 tcpdump 」是一款强大的网络抓包工具&#xff0c;它基于…

Vue学习笔记之生命周期函数

生命周期示意图如下所示&#xff1a; beforeCreate&#xff1a;组件初始化之前触发该事件created&#xff1a;组件初始化完毕触发该事件beforeMount&#xff1a;Vue应用对象挂载DOM结点之前触发该事件mounted&#xff1a;DOM结点挂载成功之后触发该事件beforeUpdate&#xff1a…

【Spring连载】使用Spring Data访问Redis(二)----关于连接工厂

【Spring连载】使用Spring Data访问Redis&#xff08;二&#xff09;----关于连接工厂 一、Drivers二、RedisConnection和RedisConnectionFactory三、配置 Lettuce 连接器四、配置 Jedis 连接器 一、Drivers 使用Redis和Spring的首要任务之一是通过IoC容器连接到存储。为此&am…

Springboot 快速集成 ES

1、Springboot 官网给出的版本选择标准 2、选择版本依赖 我的 elasticsearch 服务版本为 7.17.13&#xff0c;所以 springboot 版本我选用 2.7.10 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-dependencies<…

【Linux】wait()和waitpid()函数

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;Linux系列专栏&#xff1a;Linux基础 &#x1f525; 给大家…

CRG设计之复位

1. 前言 CRG(Clock and Reset Generation&#xff0c;时钟复位生成模块) 模块扮演着关键角色。这个模块负责为整个系统提供稳定可靠的时钟信号&#xff0c;同时在系统上电或出现故障时生成复位信号&#xff0c;确保各个模块按预期运行。简而言之&#xff0c;CRG模块就像是SoC系…

代码随想录算法训练营第六天 - 哈希表part01

哈希表 笔记&#xff1a; 哈希表能解决什么问题呢&#xff0c;一般哈希表都是用来快速判断一个元素是否出现集合里。当我们遇到了要快速判断一个元素是否出现集合里的时候&#xff0c;就要考虑哈希法。 但是哈希法也是牺牲了空间换取了时间&#xff0c;因为我们要使用额外的数…

网工每日一练(1月30日)

试题1 以太网中的帧属于 &#xff08;B&#xff09; 协议数据单元。 A、物理层 B、数据链路层 C、网络层 D、应用层 试题2 在Linux 系统中&#xff0c;采用 &#xff08;B&#xff09; 命令查看进程输出的信息&#xff0c;得到下图所示的结果。系统启动时最先运行的进程是 &…

黑盒测试用例的具体设计方法(7种)

7种常见的黑盒测设用例设计方法&#xff0c;分别是等价类、边界值、错误猜测法、场景设计法、因果图、判定表、正交排列。 &#xff08;一&#xff09;等价类 1.概念 依据需求将输入&#xff08;特殊情况下会考虑输出&#xff09;划分为若干个等价类&#xff0c;从等价类中选…

项目交付后,PM该如何做复盘总结?

2023已经收尾&#xff0c;那些让我们或焦灼、或紧急、或喜悦、或悲伤的项目也都交付完毕了。为了更好的总结工作成果与反思&#xff0c;各家单位开始一边排练年会舞蹈一边要求员工做出项目交付后复盘方案了&#xff0c;那么&#xff0c;怎样的复盘才会让项目工作更加明确&#…

涂鸦小程序事件系统——小程序间通信

背景信息 一些内聚的、特定的功能模块&#xff0c;可能会被拆分成多个小程序&#xff0c;这些小程序之间需要进行通信、协作&#xff0c;完成数据的传递、状态的同步等。 基础库版本 ≥ 2.9.0 打开其他小程序 小程序可以通过 ty.navigateToMiniProgram 接口打开其他小程序&am…

每日OJ题_算法_前缀和④_力扣238. 除自身以外数组的乘积

目录 力扣238. 除自身以外数组的乘积 解析代码 力扣238. 除自身以外数组的乘积 238. 除自身以外数组的乘积 难度 中等 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数…

1. HarmonyOS 应用开发 TS 准备-1

1. HarmonyOS 应用开发 TS 准备-1 一、TypeScript 是什么 TypeScript 是一种由微软开发的自由和开源的编程语言。 它是 JavaScript 的一个超集&#xff0c;而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程。 TypeScript 提供最新的和不断发展的 JavaScript…

美易官方《盘前:道指期货跌0.04% 风险周降临》

盘前&#xff1a;道指期货跌0.04% 风险周降临 随着市场的波动&#xff0c;道指期货在盘前微幅下跌0.04%&#xff0c;投资者们正在迎接一个重要的风险周。这个风险周可能会对市场产生重大影响&#xff0c;因此投资者们需要密切关注。美股股指期货周一盘前涨跌互现&#xff0c;本…