什么是机器学习
Twin Delayed DDPG (TD3
) 是一种用于解决连续动作空间的强化学习问题的算法,是 Deep Deterministic Policy Gradient (DDPG
) 的改进版本。TD3
引入了一些技巧,例如双Q网络(Twin Q-networks
)和延迟更新,以提高算法的性能和稳定性。
以下是一个使用 Python 和 TensorFlow/Keras
实现简单的 TD3
的示例。在这个例子中,我们将使用 OpenAI Gym 的 Pendulum
环境。
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
import gym# 定义TD3 Agent
class TD3Agent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.gamma = 0.99 # 折扣因子self.tau = 0.005 # 软更新参数self.actor_lr = 0.001self.critic_lr = 0.001self.policy_noise = 0.2self.policy_noise_clip = 0.5self.exploration_noise = 0.1self.buffer_size = 1000000self.batch_size = 100self.buffer = []# 构建演员(Actor)网络和目标演员网络self.actor = self.build_actor()self.target_actor = self.build_actor()self.target_actor.set_weights(self.actor.get_weights())# 构建两个评论家(Critic)网络和目标评论家网络self.critic_1 = self.build_critic()self.target_critic_1 = self.build_critic()self.target_critic_1.set_weights(self.critic_1.get_weights())self.critic_2 = self.build_critic()self.target_critic_2 = self.build_critic()self.target_critic_2.set_weights(self.critic_2.get_weights())def build_actor(self):state_input = Input(shape=(self.state_size,))dense1 = Dense(400, activation='relu')(state_input)dense2 = Dense(300, activation='relu')(dense1)output = Dense(self.action_size, activation='tanh')(dense2)model = Model(inputs=state_input, outputs=output)model.compile(loss='mse', optimizer=Adam(lr=self.actor_lr))return modeldef build_critic(self):state_input = Input(shape=(self.state_size,))action_input = Input(shape=(self.action_size,))concat = tf.keras.layers.concatenate([state_input, action_input])dense1 = Dense(400, activation='relu')(concat)dense2 = Dense(300, activation='relu')(dense1)output = Dense(1, activation='linear')(dense2)model = Model(inputs=[state_input, action_input], outputs=output)model.compile(loss='mse', optimizer=Adam(lr=self.critic_lr))return modeldef get_action(self, state):state = np.reshape(state, [1, self.state_size])action = self.actor.predict(state)[0]action = np.clip(action + np.random.normal(0, self.exploration_noise, self.action_size), -1, 1)return actiondef train(self):if len(self.buffer) < self.batch_size:returnbatch = np.random.choice(self.buffer, self.batch_size, replace=False)states, actions, rewards, next_states, dones = zip(*batch)states = np.vstack(states)actions = np.vstack(actions)rewards = np.vstack(rewards)next_states = np.vstack(next_states)dones = np.vstack(dones)next_actions = self.target_actor.predict(next_states) + np.clip(np.random.normal(0, self.policy_noise, self.action_size), -self.policy_noise_clip, self.policy_noise_clip)next_actions = np.clip(next_actions, -1, 1)target_q_values = np.minimum(self.target_critic_1.predict([next_states, next_actions]),self.target_critic_2.predict([next_states, next_actions]))target_values = rewards + self.gamma * (1 - dones) * target_q_valuesself.critic_1.train_on_batch([states, actions], target_values)self.critic_2.train_on_batch([states, actions], target_values)actor_gradients = np.reshape(self.critic_1.gradient(states + self.actor.predict(states)), [-1, self.action_size])actor_gradients = actor_gradients / self.batch_sizeself.actor.train_on_batch(states, actor_gradients)self.soft_update_target_networks()def soft_update_target_networks(self):actor_weights = np.array(self.actor.get_weights())target_actor_weights = np.array(self.target_actor.get_weights())self.target_actor.set_weights(self.tau * actor_weights + (1 - self.tau) * target_actor_weights)critic_1_weights = np.array(self.critic_1.get_weights())target_critic_1_weights = np.array(self.target_critic_1.get_weights())self.target_critic_1.set_weights(self.tau * critic_1_weights + (1 - self.tau) * target_critic_1_weights)critic_2_weights = np.array(self.critic_2.get_weights())target_critic_2_weights = np.array(self.target_critic_2.get_weights())self.target_critic_2.set_weights(self.tau * critic_2_weights + (1 - self.tau) * target_critic_2_weights)def store_experience(self, state, action, reward, next_state, done):self.buffer.append((state, action, reward, next_state, done))if len(self.buffer) > self.buffer_size:self.buffer.pop(0)# 初始化环境和Agent
env = gym.make('Pendulum-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.shape[0]
agent = TD3Agent(state_size, action_size)# 训练TD3 Agent
num_episodes = 500
for episode in range(num_episodes):state = env.reset()total_reward = 0for time in range(500): # 限制每个episode的步数,防止无限循环# env.render() # 如果想可视化训练过程,可以取消注释此行action = agent.get_action(state)next_state, reward, done, _ = env.step(action)total_reward += rewardagent.store_experience(state, action, reward, next_state, done)agent.train()state = next_stateif done:print("Episode: {}, Total Reward: {}".format(episode + 1, total_reward))break# 关闭环境
env.close()
在这个例子中,我们定义了一个简单的TD3 Agent,包括演员(Actor)和两个评论家(Critic)神经网络。在训练过程中,我们使用了两个评论家网络和一些技巧来提高稳定性,并进行了软更新。请注意,TD3算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如归一化奖励、使用更复杂的神经网络结构等。