学习链接
ChatGPT Prompt Engineering for Developers - DeepLearning.AI
一、prompt engineering for developer
1、原则
prompting principles and iterative pattern
2、用于summarize
环境与helper functions
import openai
import osfrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env fileopenai.api_key = os.getenv('OPENAI_API_KEY')def get_completion(prompt, model="gpt-3.5-turbo",temperature=0): # Andrew mentioned that the prompt/ completion paradigm is preferable for this classmessages = [{"role": "user", "content": prompt}]response = openai.ChatCompletion.create(model=model,messages=messages,temperature=temperature, # this is the degree of randomness of the model's output)return response.choices[0].message["content"]
prompt = f"""
Your task is to generate a short summary of a product \
review from an ecommerce site to give feedback to the \
pricing deparmtment, responsible for determining the \
price of the product. Summarize the review below, delimited by triple
backticks, in at most 30 words, and focusing on any aspects \
that are relevant to the price and perceived value. Review: ```{prod_review}```
"""response = get_completion(prompt)
print(response)
prompt = f"""
Your task is to extract relevant information from \
a product review from an ecommerce site to give \
feedback to the Shipping department. From the review below, delimited by triple quotes \
extract the information relevant to shipping and \
delivery. Limit to 30 words. Review: ```{prod_review}```
"""response = get_completion(prompt)
print(response)
Try "extract" instead of "summarize"
3、用于推断
如情绪识别,写一段有情绪倾向的文章等
https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/5/inferring
4、用于转换
如翻译、拼写、语法检查、格式转换等
(1)翻译
prompt = f"""
Translate the following text to French and Spanish
and English pirate: \
```I want to order a basketball```
"""
response = get_completion(prompt)
print(response)
(2)文风转换
prompt = f"""
Translate the following from slang to a business letter:
'Dude, This is Joe, check out this spec on this standing lamp.'
"""
response = get_completion(prompt)
print(response)
(3)格式转换
data_json = { "resturant employees" :[ {"name":"Shyam", "email":"shyamjaiswal@gmail.com"},{"name":"Bob", "email":"bob32@gmail.com"},{"name":"Jai", "email":"jai87@gmail.com"}
]}prompt = f"""
Translate the following python dictionary from JSON to an HTML \
table with column headers and title: {data_json}
"""
response = get_completion(prompt)
print(response)from IPython.display import display, Markdown, Latex, HTML, JSON
display(HTML(response))
(4)语法检查、更正等
5、Expanding(扩展)
参数:temperature
6、Chatbot
角色说明
order robot
def collect_messages(_):prompt = inp.value_inputinp.value = ''context.append({'role':'user', 'content':f"{prompt}"})response = get_completion_from_messages(context) context.append({'role':'assistant', 'content':f"{response}"})panels.append(pn.Row('User:', pn.pane.Markdown(prompt, width=600)))panels.append(pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))return pn.Column(*panels)import panel as pn # GUI
pn.extension()panels = [] # collect display context = [ {'role':'system', 'content':"""
You are OrderBot, an automated service to collect orders for a pizza restaurant. \
You first greet the customer, then collects the order, \
and then asks if it's a pickup or delivery. \
You wait to collect the entire order, then summarize it and check for a final \
time if the customer wants to add anything else. \
If it's a delivery, you ask for an address. \
Finally you collect the payment.\
Make sure to clarify all options, extras and sizes to uniquely \
identify the item from the menu.\
You respond in a short, very conversational friendly style. \
The menu includes \
pepperoni pizza 12.95, 10.00, 7.00 \
cheese pizza 10.95, 9.25, 6.50 \
eggplant pizza 11.95, 9.75, 6.75 \
fries 4.50, 3.50 \
greek salad 7.25 \
Toppings: \
extra cheese 2.00, \
mushrooms 1.50 \
sausage 3.00 \
canadian bacon 3.50 \
AI sauce 1.50 \
peppers 1.00 \
Drinks: \
coke 3.00, 2.00, 1.00 \
sprite 3.00, 2.00, 1.00 \
bottled water 5.00 \
"""} ] # accumulate messagesinp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here…')
button_conversation = pn.widgets.Button(name="Chat!")interactive_conversation = pn.bind(collect_messages, button_conversation)dashboard = pn.Column(inp,pn.Row(button_conversation),pn.panel(interactive_conversation, loading_indicator=True, height=300),
)dashboard
7、总结
二、LangChain for LLM Application Development
1、Components
2、