浙大陈越何钦铭数据结构07-图6 旅游规划【最小堆实现】

题目:

题目和浙大陈越何钦铭数据结构07-图6 旅游规划是一样的,不同的是用最小堆实现函数【FindMinDist】。

时间复杂度对比:
浙大陈越何钦铭数据结构07-图6 旅游规划:
创建图(CreateGraph):时间复杂度为O(N^2),因为需要使用两层循环初始化邻接矩阵。
插入边(InsertEdge):时间复杂度为O(1),因为只是将边的距离和代价插入到邻接矩阵中。
构建图(BuildGraph):时间复杂度为O(E),其中E为边的个数。需要进行E次的边的插入操作。
查找未被收录顶点中dist最小者(FindMinDist):时间复杂度为O(N),需要遍历所有未收录的顶点,查找其中dist最小的顶点。
Dijkstra算法主循环:时间复杂度为O(N^2),每次循环都需要找到未收录顶点中dist最小的顶点,并更新其周围顶点的dist和cost值。
综上所述,整个算法的时间复杂度为O(N^2)。

堆实现代码:
如果将 FindMinDist 函数使用最小堆实现,会使得 Dijkstra 算法的时间复杂度变为 O((N + E)logN),其中 N 为顶点数,E 为边数。
具体分析如下:
创建图(CreateGraph):时间复杂度仍为 O(N^2),与之前相同。
插入边(InsertEdge):时间复杂度仍为 O(1),与之前相同。
构建图(BuildGraph):时间复杂度仍为 O(E),与之前相同。
查找未被收录顶点中dist最小者(FindMinDist):使用最小堆实现后,每次查找最小值的时间复杂度为 O(logN),总共需要进行 N 次查找,因此时间复杂度为 O(NlogN)。
Dijkstra算法主循环:在每个节点更新最短路径时,需要将其邻接节点的信息插入最小堆中,插入一个节点的时间复杂度为 O(logN),总共需要插入 E 个节点,因此时间复杂度为 O(ElogN)。同时,在每个节点更新最短路径时,还需要进行一次堆操作,将堆中的最小值取出,时间复杂度为 O(logN),总共需要进行 N 次堆操作,因此时间复杂度为 O(NlogN)。
综上所述,使用最小堆实现的 Dijkstra 算法的时间复杂度为 O((N + E)logN)。相比于之前的 O(N^2),当图的规模较大时,使用最小堆可以提高算法的效率。

代码:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>#define MAX_VERTEX_NUM 500
#define MAX_DIST 501
#define MAX_COST 501
#define ERROR -1
#define MIN_DATA -1000typedef int ELEMENT_TYPE;
typedef int Vertex;struct _MinHeap
{ELEMENT_TYPE *Elements;int Size;int Capacity;
};
typedef struct _MinHeap *MinHeap;struct _Edge
{Vertex V, W;int dist, cost;
};
typedef struct _Edge *Edge;struct _MGraph
{int Nv, Ne;int dist[MAX_VERTEX_NUM][MAX_VERTEX_NUM];int cost[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
};
typedef struct _MGraph *MGraph; /* 以邻接矩阵存储的图的类型  */void InsertEdge(MGraph G, Edge E); // 插入边
MGraph CreateGraph(int vertexNum); // 初始化图
MGraph BuildGraph();bool isEmpty(MinHeap H);
bool isFull(MinHeap H);
void PercUp(MinHeap H, int p, int dist[]);
ELEMENT_TYPE DelMin(MinHeap H, int dist[]);
void FreeHeap(MinHeap H);
MinHeap CreateHeap(int MaxSize);
void BuildMinHeap(MinHeap H, int dist[]);Vertex FindMinDist(MinHeap H, int dist[]);
void Dijkstra(MGraph G, int dist[], int cost[], Vertex S);Vertex src, dst;
// 对于全局的int数组自动初始化为0,bool数组初始化为false
int dist[MAX_VERTEX_NUM];
int cost[MAX_VERTEX_NUM];
bool collected[MAX_VERTEX_NUM];/*
07-图6 旅游规划
难度:3颗星4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 203 40*/int main()
{MGraph G = BuildGraph();Dijkstra(G, dist, cost, src);printf("%d %d\n", dist[dst], cost[dst]);return 0;
}MGraph CreateGraph(int vertexNum)
{MGraph G = (MGraph)malloc(sizeof(struct _MGraph));G->Nv = vertexNum;G->Ne = 0;Vertex V, W;for (V = 0; V < vertexNum; V++){for (W = 0; W < vertexNum; W++){G->dist[V][W] = MAX_DIST;G->cost[V][W] = MAX_COST;}}return G;
}void InsertEdge(MGraph G, Edge E)
{/* 插入边<V,W> */G->dist[E->V][E->W] = E->dist;G->cost[E->V][E->W] = E->cost;/* 若是无向图则要反向也插入 */G->dist[E->W][E->V] = E->dist;G->cost[E->W][E->V] = E->cost;
}MGraph BuildGraph()
{MGraph G;Edge E;int Nv, Ne;scanf("%d %d %d %d", &Nv, &Ne, &src, &dst);G = CreateGraph(Nv);if (Ne){G->Ne = Ne;E = (Edge)malloc(sizeof(struct _Edge));for (int i = 0; i < G->Ne; i++){scanf("%d %d %d %d", &E->V, &E->W, &E->dist, &E->cost);InsertEdge(G, E);}free(E);}return G;
}Vertex FindMinDist(MinHeap H, int dist[])
{Vertex minV = ERROR;// 从堆中取出最小值,并维护最小堆的有效性。minV = DelMin(H, dist);return minV;
}void Dijkstra(MGraph G, int dist[], int cost[], Vertex S)
{Vertex V, W;/* 初始化:此处默认邻接矩阵中不存在的边用INFINITY表示 */for (V = 0; V < G->Nv; V++){ // dist和cost分别保存的是源点到顶点V的距离和开销dist[V] = G->dist[S][V];cost[V] = G->cost[S][V];}/* 先将起点收入集合 */dist[S] = 0;cost[S] = 0;collected[S] = true;// 根据dist对未收录顶点创建最小堆MinHeap H = CreateHeap(MAX_VERTEX_NUM);for (V = 0; V < G->Nv; V++){if (collected[V] == false){ // H->Elements保存的是未收集顶点的编号,本例依次是1,2,3H->Elements[++H->Size] = V;}}BuildMinHeap(H, dist);while (1){/* V = 未被收录顶点中dist最小者 */V = FindMinDist(H, dist);if (V == ERROR)      /* 若这样的V不存在 */break;           /* 算法结束 */collected[V] = true; /* 收录V */for (W = 0; W < G->Nv; W++) /* 对图中的每个顶点W *//* 若W是V的邻接点并且未被收录 */if (collected[W] == false && G->dist[V][W] < MAX_DIST){if (G->dist[V][W] < 0) /* 若有负边 */return;            /* 不能正确解决,返回错误标记 *//* 若收录V使得dist[W]变小 */if (dist[V] + G->dist[V][W] < dist[W]){dist[W] = dist[V] + G->dist[V][W]; /* 更新dist[W] */cost[W] = cost[V] + G->cost[V][W];}else if (dist[V] + G->dist[V][W] == dist[W] &&cost[V] + G->cost[V][W] < cost[W]){cost[W] = cost[V] + G->cost[V][W];}}} /* while结束*/FreeHeap(H);free(G);
}bool isEmpty(MinHeap H)
{return H->Size == 0;
}bool isFull(MinHeap H)
{return H->Size == H->Capacity;
}ELEMENT_TYPE DelMin(MinHeap H, int dist[])
{if (!isEmpty(H)){ELEMENT_TYPE min, last;int parent, child;min = H->Elements[1];last = H->Elements[H->Size--];for (parent = 1; 2 * parent <= H->Size; parent = child){child = 2 * parent;if ((child != H->Size) && (dist[H->Elements[child]] > dist[H->Elements[child + 1]])){child++;}if (dist[last] <= dist[H->Elements[child]]){break;}else{H->Elements[parent] = H->Elements[child];}}H->Elements[parent] = last;return min;}else{return ERROR;}
}void PercUp(MinHeap H, int p, int dist[])
{ /*根据顶点的dist值,决定顶点在堆中的存储位置。对dist[H->Elements[child]] > dist[H->Elements[child + 1]]的理解dist[x] > dist[y],本质是比较两个顶点之间的dist值,x,y是顶点序号。dist[x]的初始值通过dist[V] = G->dist[S][V]获得,并用dist[W] = dist[V] + G->dist[V][W]更新child是顶点在堆中的索引,H->Elements[child]存储的是顶点序号所以dist[H->Elements[child]]是顶点的dist值。*/int parent, child;ELEMENT_TYPE X;X = H->Elements[p];for (parent = p; 2 * parent <= H->Size; parent = child){child = 2 * parent;if ((child != H->Size) && (dist[H->Elements[child]] > dist[H->Elements[child + 1]])){child++;}if (dist[X] <= dist[H->Elements[child]]){break;}else{H->Elements[parent] = H->Elements[child];}}H->Elements[parent] = X;
}void FreeHeap(MinHeap H)
{if (H != NULL){free(H->Elements);free(H);}
}MinHeap CreateHeap(int MaxSize)
{MinHeap H = (MinHeap)malloc(sizeof(struct _MinHeap));H->Elements = (ELEMENT_TYPE *)malloc((MaxSize + 1) * sizeof(ELEMENT_TYPE));H->Elements[0] = MIN_DATA;H->Size = 0;H->Capacity = MaxSize;return H;
}void BuildMinHeap(MinHeap H, int dist[])
{ // p表示顶点在堆中的位置int p;for (p = H->Size / 2; p > 0; p--){PercUp(H, p, dist);}
}

小结:
本题的最小堆比用循环的方式实现FindMinDist要难一些,主要是要理解和修改堆的几个实现,核心是构造和维护最小堆要根据dist的值,来维护对应的顶点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv的haarcascade_frontalface_default.xml等文件

文章目录 GitHub下载在安装好的OpenCV文件夹下寻找opencv-python中获取 GitHub下载 下载地址&#xff1a;https://github.com/opencv/opencv/tree/master/data/haarcascades 在安装好的OpenCV文件夹下寻找 路径如下&#xff1a; 你安装的opencv路径\OpenCV\opencv\build\et…

ELK安装、部署、调试(一)设计规划及准备

一、整体规划如图&#xff1a; 【filebeat】 需要收集日志的服务器&#xff0c;安装filebeat软件&#xff0c;用于收集日志。logstash也可以收集日志&#xff0c;但是占用的系统资源过大&#xff0c;所以使用了filebeat来收集日志。 【kafka】 接收filebeat的日志&#xff…

Can‘t connect to local MySQL server through socket ‘/tmp/mysql.sock‘

最近在用django框架开发后端时&#xff0c;在运行 $python manage.py makemigrations 命令时&#xff0c;报了以上错误&#xff0c;错误显示连接mysql数据库失败&#xff0c;查看了mysql数据库初始化配置文件my.cnf&#xff0c;我的mysql.sock文件存放路径配置在了/usr/local…

查看GPU占用率

如何监控NVIDIA GPU 的运行状态和使用情况_nvidia 85c_LiBiGo的博客-CSDN博客设备跟踪和管理正成为机器学习工程的中心焦点。这个任务的核心是在模型训练过程中跟踪和报告gpu的使用效率。有效的GPU监控可以帮助我们配置一些非常重要的超参数&#xff0c;例如批大小&#xff0c;…

Docker一键部署Nacos

官方参考文档&#xff1a; https://nacos.io/zh-cn/docs/quick-start-docker.html 本人实践 一、创建数据库&数据表 使用sql脚本创建&#xff1a;https://github.com/alibaba/nacos/blob/master/config/src/main/resources/META-INF/nacos-db.sql 二、新建文件夹并赋权…

茄子科技面试题

前言&#xff1a;实习项目 一、健康险核心 batch 自动查询和一键重启 二、后端如何实现免密登录 Spring Boot与Spring Security&#xff1a; 如果你使用的是Spring框架&#xff0c;Spring Security可以为你提供大量的安全功能。创建一个基于Spring Boot的新项目&#xff0c;并…

java八股文面试[数据库]——MySQL索引的数据结构

知识点&#xff1a; 【2023年面试】mysql索引的基本原理_哔哩哔哩_bilibili 【2023年面试】mysql索引结构有哪些&#xff0c;各自的优劣是什么_哔哩哔哩_bilibili

【MySQL学习笔记】(七)内置函数

内置函数 日期函数示例案例-1案例-2 字符串函数示例 数学函数其他函数 日期函数 示例 获得当前年月日 mysql> select current_date(); ---------------- | current_date() | ---------------- | 2023-09-03 | ---------------- 1 row in set (0.00 sec)获得当前时分秒…

java 批量下载将多个文件(minio中存储)压缩成一个zip包

我的需求是将minio中存储的文件按照查询条件查询出来统一压成一个zip包然后下载下来。 思路&#xff1a;针对这个需求&#xff0c;其实可以有多个思路&#xff0c;不过也大同小异&#xff0c;一般都是后端返回流文件前端再处理下载&#xff0c;也有少数是压缩成zip包之后直接给…

QT中信号与槽机制的介绍,以及信号与槽连接的几种方式

信号与槽机制 信号与槽的介绍 功能&#xff1a;实现多个组件之间的相互通信&#xff0c;是QT引以为傲的核心机制信号&#xff1a;就是信号函数&#xff0c;定义在类体的signals权限下&#xff0c;是一个不完整的函数&#xff0c;只有声明没有定义&#xff1b;槽&#xff1a;就…

9.4 【C语言】用指针处理链表

9.4.1 什么是链表 它是动态地进行存储分配的一种结构。 链表中各元素在内存中的地址是不连续的。要找某一元素&#xff0c;必须先找到上一个元素&#xff0c;根据它提供的下一元素地址才能找到下一个元素。 如果不提供“头指针”&#xff0c;则整个链表无法访问。 9.4.2 建…

C++算法 —— 动态规划(1)斐波那契数列模型(包含动规思路总介绍)

文章目录 1、动规思路简介2、第N个泰波那契数列3、三步问题4、使用最小花费爬楼梯5、解码方法 1、动规思路简介 动规的思路有五个步骤&#xff0c;且最好画图来理解细节&#xff0c;不要怕麻烦。当你开始画图&#xff0c;仔细阅读题时&#xff0c;学习中的沉浸感就体验到了。 …

Linux常用命令——cupsdisable命令

在线Linux命令查询工具 cupsdisable 停止指定的打印机 补充说明 cupsdisable命令用于停止指定的打印机。 语法 cupsdisable(选项)(参数)选项 -E&#xff1a;当连接到服务器时强制使用加密&#xff1b; -U&#xff1a;指定连接服务器时使用的用户名&#xff1b; -u&#…

git的常用命令

初始化git&#xff0c;以及如何提交代码 1、配置用户信息 git config --global user.name zhangsan # 设置用户签名 git config --global user.email zhangsanqq.com # 设置用户邮箱&#xff08;不会验证&#xff0c;可以不存在&#xff09;1.1、查看是否已经添加用户配置 在…

长城网络靶场,第一题笔记

黑客使用了哪款扫描工具对论坛进行了扫描&#xff1f;&#xff08;小写简称&#xff09; 第一关&#xff0c;第三小题的答案是awvs 思路是先统计查询 然后过滤ip检查流量 过滤语句&#xff1a;tcp and ip.addr ip 114.240179.133没有 第二个101.36.79.67 之后找到了一个…

前端 CSS - 如何隐藏右侧的滚动条 -关于出现过多的滚动条导致界面不美观

1、配置 HTML 标签&#xff0c;隐藏右侧的滚动条 CSS 配置&#xff1a;下面两个一起写进进去&#xff0c;适配 IE、火狐、谷歌浏览器 html {/*隐藏滚动条&#xff0c;当IE下溢出&#xff0c;仍然可以滚动*/-ms-overflow-style:none;/*火狐下隐藏滚动条*/overflow:-moz-scroll…

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。

LeetCode第73题矩阵置零 1.思路&#xff1a; 想到一个开辟一点空间来解决方法&#xff0c;使用哈希集。就是使用一个哈希集&#xff08;row和col&#xff09;来储存数组中的元素为0的下标。然后再遍历&#xff0c;整个二维数组&#xff0c;在哈希集中存在对应的下标&#xff0c…

可扩展的Blender插件开发汇总

成熟的 Blender 3D 插件是令人惊奇的事情。作为 Python 和 Blender 的新手,我经常发现自己被社区中的人们创造的强大的东西弄得目瞪口呆。坦率地说,其中一些包看起来有点神奇,当自我怀疑或冒名顶替综合症的唠叨声音被打破时,很容易想到“如果有人能做出可以做xxx的东西就好…

AI:06-基于OpenCV的二维码识别技术的研究

二维码作为一种广泛应用于信息传递和识别的技术,具有识别速度快、容错率高等优点。本文探讨如何利用OpenCV库实现二维码的快速、准确识别,通过多处代码实例展示技术深度。 二维码作为一种矩阵型的条码,广泛应用于各个领域,如商品追溯、移动支付、活动签到等。二维码的快速…

初识Kafka

kafka 第一章、初识Kafka 原先&#xff1a; kafka&#xff0c;由LinkedIn公司采用Scala语言开发的一个多分区&#xff0c;多副本&#xff0c;基于Zookeeper协调的分布式消息系统&#xff0c;被捐献给Apache基金会。 现在 分布式流式处理平台。 高吞吐 可持久化 可水平扩展 …