【揭秘】ForkJoinTask全面解析

【揭秘】ForkJoinTask全面解析 - 程序员古德

内容摘要

ForkJoinTask的显著优点在于其高效的并行处理能力,它能够将复杂任务拆分成多个子任务,并利用多核处理器同时执行,从而显著提升计算性能,此外,ForkJoinTask还提供了简洁的API和强大的任务管理机制,使得开发者能够更轻松地编写并行化代码,高效地利用系统资源。

核心概念

ForkJoinTask在Java中主要用来解决可以并行处理的任务的分解与合并问题,它是行计算框架ForkJoinFramework的核心组件,提供了一种高效的方式来利用多核处理器,它解决了以下几个方面的问题:

  1. 任务分解:很多计算密集型或数据处理密集型的问题可以分解为更小的子任务,例如,对一个大型数组进行排序或处理大量数据记录时,通常可以将数组或数据记录集分割成多个较小的部分,然后并行处理这些部分,ForkJoinTask提供了将任务递归分解成更小任务的方式,直到任务足够小以至于顺序执行比并行执行更高效。
  2. 任务并行化:通过ForkJoinPoolForkJoinTask能够将分解后的子任务分配给不同的线程执行,从而实现并行处理,这充分利用了多核处理器的计算能力,提高了程序的执行效率。
  3. 任务结果合并:在子任务并行执行完成后,需要将它们的结果合并以得到最终的结果,ForkJoinTask提供了合并子任务结果的机制,确保所有子任务的结果都能正确地组合在一起。
  4. 工作窃取ForkJoinPool还实现了工作窃取算法,这意味着当一个线程完成了它自己的任务后,它可以从其他线程的任务队列中“窃取”任务来执行,从而减少了线程的空闲时间,提高了资源利用率。

因此,ForkJoinTask是用来处理可并行化任务的强大工具,它通过任务分解、并行化、结果合并和工作窃取等机制,有效地提高了程序的执行效率和资源利用率。

#代码案例

下面是一个使用了ForkJoinTask的简单示例,演示了如何分解一个任务,使其并行处理一个整数数组,并计算数组中所有元素的和。

先创建一个SumTask类,它继承自RecursiveTask<Integer>,用于计算数组元素的和,如果数组的大小超过一个阈值(例如10),则任务将递归地分解为两个子任务,分别处理数组的前半部分和后半部分,否则,任务将顺序计算数组的和,如下代码:

import java.util.concurrent.RecursiveTask;  public class SumTask extends RecursiveTask<Integer> {  private static final int THRESHOLD = 10; // 阈值,当数组大小小于这个值时,不再进行任务分解  private final int[] array;  private final int start;  private final int end;  public SumTask(int[] array) {  this(array, 0, array.length);  }  private SumTask(int[] array, int start, int end) {  this.array = array;  this.start = start;  this.end = end;  }  @Override  protected Integer compute() {  // 如果任务足够小,直接计算结果  if (end - start <= THRESHOLD) {  int sum = 0;  for (int i = start; i < end; i++) {  sum += array[i];  }  return sum;  } else {  // 否则,将任务分解为两个子任务  int middle = (start + end) / 2;  SumTask leftTask = new SumTask(array, start, middle);  SumTask rightTask = new SumTask(array, middle, end);  // 异步执行子任务并等待结果  return leftTask.fork().join() + rightTask.fork().join();  }  }  
}

如下client代码(main函数),如下:

import java.util.concurrent.ForkJoinPool;  
import java.util.concurrent.ForkJoinTask;  public class ForkJoinTaskExample {  public static void main(String[] args) {  int[] array = new int[100];  // 初始化数组  for (int i = 0; i < array.length; i++) {  array[i] = i;  }  // 创建一个ForkJoinPool  ForkJoinPool pool = new ForkJoinPool();  // 提交任务并获取结果  ForkJoinTask<Integer> task = new SumTask(array);  Integer sum = pool.invoke(task);  // 输出结果  System.out.println("Sum of array elements: " + sum);  // 关闭ForkJoinPool(虽然不是严格必需的,因为在这个简单例子中程序即将结束,但在生产代码中是个好习惯)  pool.shutdown();  }  
}

运行代码将输出,如下:

Sum of array elements: 4950

数组包含了0到99的整数,它们的和是4950,通过使用ForkJoinTask,能够并行地计算这个和。

核心API

ForkJoinTask 是 Java 并发包 java.util.concurrent 中的一个抽象类,它表示可以被 ForkJoinPool 执行的任务,ForkJoinTask 有两个直接子类:RecursiveActionRecursiveTask,分别表示不返回结果和返回结果的任务,以下是 ForkJoinTask 及其子类中一些重要方法的简要说明:

fork()

该方法用于在 ForkJoinPool 中异步地执行当前任务,如果当前任务已经在执行,则该方法不会有任何效果,调用 fork() 后,任务进入 ForkJoinPool 的工作队列中等待执行,fork() 是一个非阻塞方法,它会立即返回。

join()

该方法用于等待任务的完成,并获取其结果(如果任务有结果的话),如果任务已经完成,join() 会立即返回结果,如果任务尚未完成,join() 会阻塞调用线程,直到任务完成为止,对于 RecursiveActionjoin() 没有返回值;对于 RecursiveTaskjoin() 返回任务计算的结果。

invoke()

该方法用于在当前线程中执行任务,而不是在 ForkJoinPool 中异步执行,invoke() 会等待任务完成,并返回结果(如果任务有结果的话),通常,在不需要并行处理或任务很小不适合分解时使用 invoke()

invokeAll(ForkJoinTask… tasks)

这是ForkJoinTask 的静态方法,该方法用于执行给定的任务数组,并等待所有任务完成,它返回一个包含每个任务结果的数组(如果任务是 RecursiveTask 类型的话),如果任务是 RecursiveAction 类型,则结果数组中的每个元素都是 null,因为 RecursiveAction 不返回结果。

getPool()

返回执行此任务的 ForkJoinPool,如果任务尚未安排或已开始,则返回 null

getRawResult()

对于 RecursiveTask,返回任务的结果,但不等待任务完成。如果任务尚未完成,则可能返回不确定的结果,对于 RecursiveAction,此方法没有定义,因为它不返回结果。

setRawResult(V value)

对于 RecursiveTask,此方法用于设置任务的结果,这通常在任务计算完成后调用,对于 RecursiveAction,此方法没有定义。

isCompletedAbnormally()

如果任务因异常而完成,则返回 true

isCancelled()

如果任务被取消,则返回 true

cancel(boolean mayInterruptIfRunning)

尝试取消此任务的执行,如果任务已经开始执行,则参数 mayInterruptIfRunning 决定是否应该中断执行任务的线程。

ForkJoinTask 的设计主要是为了支持分治算法和并行计算,在实际使用中,通常通过扩展 RecursiveActionRecursiveTask 来实现自己的并行任务,而不是直接使用 ForkJoinTask 类,此外,使用 ForkJoinTask 时需要注意任务的粒度控制,以避免过度分解导致的性能下降。

核心总结

【揭秘】ForkJoinTask全面解析 - 程序员古德

ForkJoinTask是Java中处理并行计算的利器,其优点在于能够轻松地将大任务拆分成小任务,利用多核处理器并行处理,提高执行效率,它的缺点也很明显,比如任务划分和数据同步的复杂性可能导致额外的开销。ForkJoinTask适合处理计算密集型且可分解的任务,但要注意任务粒度的控制,避免划分过细;同时,合理处理线程安全和任务依赖关系,确保数据的正确性和一致性。

关注我,每天学习互联网编程技术 - 程序员古德

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/651230.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常规的管理系统除了适用该有的范儿一定要有!气质上不能输

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验&#xff01;希望我的分享能帮助到您&#xff01;如需帮助可以评论关注私信我们一起探讨&#xff01;致敬感谢感恩&#xff01; 常规的管理系统除了适用该有的范儿一定要有!气质上不能输 在现今快速发展的商业环境中…

Android音量调节修改

前言 今日公司&#xff0c;安卓设备的音量显示不正常&#xff0c;让我来修复这个bug&#xff0c;现在已修复&#xff0c;做个博客&#xff0c;记录一下&#xff0c;以后碰到类似一下子就好解决。 Android音量调节相关 路径 frameworks\base\services\core\java\com\android…

NIO-Selector详解

NIO-Selector详解 Selector概述 Selector选择器&#xff0c;也可以称为多路复⽤器。它是Java NIO的核⼼组件之⼀&#xff0c;⽤于检查⼀个或多个Channel的状态是否处于可读、可写、可连接、可接收等。通过⼀个Selector选择器管理多个Channel&#xff0c;可以实现⼀个线程管理…

Spring boot + Azure OpenAI 服务 1.使用 GPT-35-Turbo

Azure OpenAI 服务使用 GPT-35-Turbo 先决条件 maven 注意 beta.6 版本 <dependency><groupId>com.azure</groupId><artifactId>azure-ai-openai</artifactId><version>1.0.0-beta.6</version></dependency>问答工具类 pack…

C++的关键字,命名空间,缺省参数,函数重载以及原理

文章目录 前言一、C关键字(C98)二、命名空间命名空间介绍命名空间的使用 三、C输入【cin】& 输出【cout】四、缺省参数缺省参数概念缺省参数分类缺省参数的使用小结一下 五、函数重载函数重载介绍函数重载类型 六、C支持函数重载的原理--名字修饰(name Mangling)【重点】 前…

二分算法模版

二分算法模版 实数二分算法模版实数二分模版题 整数二分算法模版向上取整二分模版向下取整二分模版二分模版的注意点二分模版中check函数的实现能够使用二分的条件 二分主要分两类&#xff0c; 一类是对实数进行二分&#xff0c;一类是对整数进行二分 对整数二分又分成2种&…

python-自动化篇-运维-监控-简单实例-道出如何使⽤Python进⾏系统监控?

如何使⽤Python进⾏系统监控&#xff1f; 使⽤Python进⾏系统监控涉及以下⼀般步骤&#xff1a; 选择监控指标&#xff1a; ⾸先&#xff0c;确定希望监控的系统指标&#xff0c;这可以包括 CPU 利⽤率、内存使⽤情况、磁盘空间、⽹络流量、服务可⽤性等。选择监控⼯具&#x…

Java实现加权平均分计算程序WeightedAverageCalculator

成绩加权平均分计算程序&#xff0c;带UI界面和输入保存功能。 因为本人对成绩的加权均分有所关注&#xff0c;但学校的教务系统查分时往往又不显示个人的加权均分&#xff0c;加之每次手动敲计算器计算很麻烦就花了点时间写了一个加权均分计算程序自用&#xff0c;顺便开源。…

STM32标准库——(5)EXTI外部中断

1.中断系统 中断&#xff1a;在主程序运行过程中&#xff0c;出现了特定的中断触发条件&#xff08;中断源&#xff09;&#xff0c;使得CPU暂停当前正在运行的程序&#xff0c;转而去处理中断程序&#xff0c;处理完成后又返回原来被暂停的位置继续运行 中断优先级&#xff…

《WebKit 技术内幕》学习之十五(6):Web前端的未来

6 Chromium OS和Chrome的Web应用 6.1 基本原理 HTML5技术已经不仅仅用来编写网页了&#xff0c;也可以用来实现Web应用。传统的操作系统支持本地应用&#xff0c;那么是否可以有专门的操作系统来支持Web应用呢&#xff1f;当然&#xff0c;现在已经有众多基于Web的操作系统&…

uniapp小程序:内存超过2mb解决方法(简单)message:Error: 上传失败:网络请求错误 代码包大小超过限制。

分析&#xff1a;这种情况是代码文件内存超过2mb无法进行预览上传 解决方法&#xff1a; 1、Hbuilder中点击运行-->运行到小程序模拟器--->运行时是否压缩代码 2、在微信小程序中点击详情--->本地设置&#xff1a; 3、点击预览即可运行了

两个近期的计算机领域国际学术会议(软件工程、计算机安全):欢迎投稿

近期&#xff0c;受邀担任两个国际学术会议的Special session共同主席及程序委员会成员&#xff08;TPC member&#xff09;&#xff0c;欢迎广大学界同行踊跃投稿&#xff0c;分享最新研究成果。期待这个夏天能够在夏威夷檀香山或者加利福尼亚圣荷西与各位学者深入交流。 SERA…

南方故乡吹来的风

故乡的风 - 张明敏 词&#xff1a;刘因国 曲&#xff1a;刘因国 南方故乡吹来的风 带着潮水的呼唤 吹着你的秀发 飘散着茉莉的香 茉莉的香哟 南方故乡吹来的风 带着渔船的归航 吹着你的欢畅 吹着渔帆点点醉哟 点点的醉哟 远方的姑娘 你是否听见 我的心在嘿哟 你…

上位机图像处理和嵌入式模块部署(c/c++ opencv)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 opencv可以运行在多个平台上面&#xff0c;当然windows平台也不意外。目前来说&#xff0c;opencv使用已经非常方便了&#xff0c;如果不想自己编译…

81 C++对象模型探索。数据语义学 - 静态成员变量的存取,非静态成员变量的存取

一&#xff0c;静态成员变量的存取 静态成员变量只有一个实体&#xff0c;保存在可执行文件的数据段中&#xff0c;如果没有初始化则保存在数据段的BBS中&#xff0c;由于存储在执行文件的数据段中&#xff0c;因此在编译阶段就会确定地址。当程序编译完成后&#xff0c;不管运…

20240127如何在线识别德语字幕?

20240127如何在线识别德语字幕&#xff1f; 2024/1/27 11:42 1945[科尔贝格]Kolberg 01:48:49 接近109分钟 德语视频的字幕OCR适配&#xff1a; 1、whisper&#xff0c;8:39-8:58&#xff0c;使用GTX1080需要接近20分钟。对整机性能要求比较重&#xff0c;特别吃显卡&#xff…

LabVIEW信号时间间隔测量

用LabVIEW软件平台开发一个用于测量两路信号时间间隔的系统。系统利用LabVIEW的数据采集和处理能力&#xff0c;能够准确测量并分析来自不同硬件板卡的信号时间间隔&#xff0c;这对于精确控制和数据分析至关重要。 系统主要由以下几部分组成&#xff1a;数据采集卡、信号处理…

力扣(LeetCode)227. 基本计算器 II

给你一个字符串表达式 s &#xff0c;请你实现一个基本计算器来计算并返回它的值。 整数除法仅保留整数部分。 你可以假设给定的表达式总是有效的。所有中间结果将在 [-231, 231 - 1] 的范围内。 注意&#xff1a;不允许使用任何将字符串作为数学表达式计算的内置函数&#…

三角函数、反三角函数

一、三角函数 二、反三角函数&#xff1a;已知三角函数值&#xff0c;反算角度大小 因为严格单调函数才有反函数一个y对应一个x&#xff0c;显然ysinx&#xff0c;ycosx&#xff0c;ytanx在其定义域并不是严格单调&#xff0c;所以需要人为划定范围。 1. 研究yarcsinx、yarcco…

CSS优先级内容

定义CSS样式时&#xff0c;经常出现两个或多个样式规则应用在同一元素的情况&#xff0c;这时就会出现优先级的情况&#xff0c;那么应用的元素应该显示哪一个样式呢&#xff1f; 一.下面举例对优先级进行具体讲解。 p{color:red;} .blue{color:orange;} #header{color:blu…