数据结构和算法笔记5:堆和优先队列

今天来讲一下堆,在网上看到一个很好的文章,不过它实现堆是用Golang写的,我这里打算用C++实现一下:

Golang: Heap data structure

1. 基本概念

  • 满二叉树(二叉树每层节点都是满的):

在这里插入图片描述

  • 完全二叉树:叶子节点只出现在最后一层或倒数第二层,并且节点都是向左聚拢
  • 非完全二叉树:下面的二叉树不满足完全二叉树的节点都向左聚拢,所以是非完全二叉树

在这里插入图片描述

堆也是一颗完全二叉树。

  • 小顶堆:根节点是最小值,并且子节点大于等于父节点
  • 大顶堆:根节点是最大值,并且子节点小于等于父节点
    在这里插入图片描述

由于树的特性,堆可以用数组索引的形式表示,以小顶堆为例,在下面的小顶堆里,依次从上到下从左往右给节点编号,根节点的编号是0,:

在这里插入图片描述

对应的数组为:

在这里插入图片描述
对比数组和堆,堆的索引有以下的性质:

  1. 根节点索引是0
  2. 若当前节点索引为i,如果它有父节点,父节点的索引是(i-1)/2(C++向下取整)
  3. 若当前节点索引为i,如果它有左节点,左节点的索引是2*i+1,如果它有右节点,右节点的索引是2*i+2
  4. 设数组的长度为len,最后一个非叶子节点的索引是(len-2)/2,比如上面的K是9,最后一个非叶子节点的索引是(9-2)/2=3
    在这里插入图片描述

2. 堆的基本操作

C++有heapn内置函数来实现,具体看c++重拾 STL之heap(堆)。这里我们讲解原理,下面以小顶堆为例描述堆的相关操作

2.0 交换节点操作

我们先定义交换节点的操作,为后面调整为堆做准备:

void HeapSwap(vector<int> &minHeap, int curIndex, int swapIndex)
{int t = minHeap[curIndex];minHeap[curIndex] = minHeap[swapIndex];minHeap[swapIndex] = t;
}

2.1 下浮操作

下浮操作是通过下浮的方式把一个完全二叉树调整为堆,具体的步骤是将它与它的左儿子,右儿子比较大小,如果不满足小顶堆的性质(当前节点的值大于等于左右孩子的节点的值),当前节点需要与左右孩子的最小值节点交换位置(否则不满足堆的性质),递归的完成这个过程。(时间复杂度是log(n))

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们定义一个swapIndex,记录需要交换调整的节点索引,如果需要调整,这个索引是当前节点和左右子节点索引的最小值,这个过程要注意判断边界条件:

void HeapSiftDown(vector<int> &minHeap, int curIndex)
{int leftChildIndex = 2 * curIndex + 1;  // 左孩子节点的索引int rightChildIndex = 2 * curIndex + 2; // 右孩子节点的索引int swapIndex = curIndex;               // 定义调整的节点索引// 判断左右孩子是否小于当前元素,如果是把swapIndex赋值为孩子索引if (leftChildIndex < minHeap.size() && minHeap[leftChildIndex] < minHeap[swapIndex])swapIndex = leftChildIndex;if (rightChildIndex < minHeap.size() && minHeap[rightChildIndex] < minHeap[swapIndex])swapIndex = rightChildIndex;// 判断交换索引和当前索引是不是一样,如果不一样说明要交换,然后继续SiftDown,直到到最后一个节点if (curIndex != swapIndex){HeapSwap(minHeap, curIndex, swapIndex);HeapSiftDown(minHeap, swapIndex);}
}

2.2 上浮操作

上浮操作是通过上浮的方式把一个完全二叉树调整为堆,具体的步骤是将它与它的父亲节点比较大小,如果不满足小顶堆的性质(父亲的节点的值大于等于当前节点的值),当前节点与父亲节点交换位置(否则不满足堆的性质),递归的完成这个过程。(时间复杂度是log(n))

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
我们类似上浮操作定义一个swapIndex,记录需要交换调整的节点索引,如果需要调整,这个索引是父亲节点的索引,这个过程要注意判断边界条件:

void HeapSiftUp(vector<int> &minHeap, int curIndex)
{int parentIndex = (curIndex - 1) / 2;//父亲节点的索引int swapIndex = curIndex;// 定义调整的节点索引// 判断左右孩子是否小于当前元素,如果是把swapIndex赋值为孩子索引if (parentIndex >= 0 && minHeap[curIndex] < minHeap[parentIndex])swapIndex = parentIndex;// 判断交换索引和当前索引是不是一样,如果不一样说明要交换,然后继续SiftUp,直到到最后一个节点if (curIndex != swapIndex){HeapSwap(minHeap, curIndex, swapIndex);HeapSiftUp(minHeap, swapIndex);}
}

2.3 给定一个数组建堆

建堆有上浮和下浮两种方法:

如果是下浮的方法,可以直接从最后一个不是叶节点的节点开始往上下浮(叶子节点没有左右孩子一定不需要交换)。这里使用了前面堆索引性质的第四条:

设数组的长度为len,最后一个非叶子节点的索引是(len-2)/2

void HeapBuild(vector<int> &array)
{int lastNoLeafIndex = (array.size() - 2) / 2;for (int i = lastNoLeafIndex; i >= 0; i--)//从最后一个不是叶节点的节点开始往上下浮HeapSiftDown(array, i);
}

如果是上浮的方法,则从索引为1节点开始往下上浮(根节点没有父亲节点一定不需要交换)。

void HeapBuild(vector<int> &array)
{for (int i = 1; i < array.size(); ++i)//从索引为1节点开始往下上浮HeapSiftUp(array, i);
}

使用下浮建堆的时间复杂度是O(n),而使用上浮建堆的时间复杂度是O(nlogn),建议使用下浮建堆。关于复杂度参考How can building a heap be O(n) time complexity?
在这里插入图片描述

2.4 Pop操作

pop操作是把根节点弹出返回,并重新调整剩余元素构成的数组为堆,数组的长度为len,这里我们把根节点和最后一个节点交换,中间要保留根节点的值,然后把数组调整为len-1(因为弹出一个元素了),重新用下浮调整为堆,然后返回堆的根节点的值。时间复杂度是log(n)

int HeapPop(vector<int> &minHeap)
{int value = minHeap[0];//保留堆的根节点的值int len = minHeap.size();//记录堆的大小HeapSwap(minHeap, 0, len - 1);//把堆的根节点和最后一个节点交换minHeap.resize(len - 1);//调整数组长度为len-1HeapSiftDown(minHeap, 0);//下浮调整为堆return value;//返回堆的根节点的值
}

2.5 Push操作

push操作是在数组末尾加入元素num,然后重新调整成堆。相比pop操作,push操作就简单很多了,我们先在数组末尾加入元素num,然后从最后一个元素的索引开始使用上浮即可。时间复杂度是log(n)

void HeapPush(vector<int> &minHeap, int num)
{minHeap.push_back(num);//在数组末尾加入元素numHeapSiftUp(minHeap, minHeap.size() - 1);//从最后一个元素的索引开始使用上浮
}

测试:

完整代码:

#include <iostream>
#include <vector>
using namespace std;void HeapSiftDown(vector<int> &minHeap, int curIndex);
void HeapSiftUp(vector<int> &minHeap, int curIndex);
void HeapSwap(vector<int> &minHeap, int curIndex, int swapIndex);
void HeapBuild(vector<int> &array);
void HeapPush(vector<int> &minHeap, int num);void HeapBuild(vector<int> &array)
{int lastNoLeafIndex = (array.size() - 2) / 2;for (int i = lastNoLeafIndex; i >= 0; i--)HeapSiftDown(array, i);
}void HeapSiftDown(vector<int> &minHeap, int curIndex)
{int leftChildIndex = 2 * curIndex + 1; int rightChildIndex = 2 * curIndex + 2;int swapIndex = curIndex;               if (leftChildIndex < minHeap.size() && minHeap[leftChildIndex] < minHeap[swapIndex])swapIndex = leftChildIndex;if (rightChildIndex < minHeap.size() && minHeap[rightChildIndex] < minHeap[swapIndex])swapIndex = rightChildIndex;if (curIndex != swapIndex){HeapSwap(minHeap, curIndex, swapIndex);HeapSiftDown(minHeap, swapIndex);}
}void HeapSiftUp(vector<int> &minHeap, int curIndex)
{int parentIndex = (curIndex - 1) / 2;int swapIndex = curIndex;if (parentIndex >= 0 && minHeap[curIndex] < minHeap[parentIndex])swapIndex = parentIndex;if (curIndex != swapIndex){HeapSwap(minHeap, curIndex, swapIndex);HeapSiftUp(minHeap, swapIndex);}
}
void HeapSwap(vector<int> &minHeap, int curIndex, int swapIndex)
{int t = minHeap[curIndex];minHeap[curIndex] = minHeap[swapIndex];minHeap[swapIndex] = t;
}int HeapPop(vector<int> &minHeap)
{int value = minHeap[0];int len = minHeap.size();HeapSwap(minHeap, 0, len - 1);minHeap.resize(len - 1);HeapSiftDown(minHeap, 0);return value;
}void HeapPush(vector<int> &minHeap, int num)
{minHeap.push_back(num);HeapSiftUp(minHeap, minHeap.size() - 1);
}int main()
{vector<int> array{9, 31, 40, 22, 10, 15, 1, 25, 91};cout << "The origin array is " << endl;for (auto &t : array)cout << t << " ";cout << endl<< "---------------------------------------------------" << endl;// 建堆HeapBuild(array);cout << "After build the heap, the array is " << endl;for (auto &t : array)cout << t << " ";cout << endl<< "---------------------------------------------------" << endl;// pop元素int top = HeapPop(array);cout << "The pop value is " << top << endl;cout << "After pop, the array is " << endl;for (auto &t : array)cout << t << " ";cout << endl<< "---------------------------------------------------" << endl;// push元素HeapPush(array, 1);cout << "After push, the array is " << endl;for (auto &t : array)cout << t << " ";cout << endl<< "---------------------------------------------------" << endl;
}

在这里插入图片描述

可以自行印证上面满足小顶堆。大顶堆的思路和小顶堆的思路差不多。读者可以自己实现一下。

3. 堆的相关使用

3.1 堆排序

堆排序基本的思路是:

  1. 初始化:数组建堆
  2. 数组的根节点和堆的最后一个节点交换
  3. 剩余元素重新排成堆(堆的长度减1),然后继续第2步操作直到数组的长度为1

这里也放一个算法导论的截图(不过它的根节点的索引是1),思路是差不多的:

在这里插入图片描述

我们这里使用小顶堆,小顶堆的根节点是最小值,每次第2步和后面的节点做交换,所以最后排序是从大到小(最小值根节点都放到数组的后面)。

前面的建堆是对整个数组来说的,但是对于堆排序,我们需要划定要排序数组的范围,所以我们对建堆和下浮两个操作另外定义一个函数:

  • HeapSiftDown函数

注意这里的数组越界处理改为了传入的heapLength,我们只需要对0-heapLength-1范围的数组做下浮的操作

void HeapSiftDown(vector<int> &minHeap, int curIndex, int heapLength)
{int leftChildIndex = 2 * curIndex + 1;  // 左孩子节点的索引int rightChildIndex = 2 * curIndex + 2; // 右孩子节点的索引int swapIndex = curIndex;               // 定义和当前索引交换的索引// 判断左右孩子是否小于当前元素,如果是把swapIndex换给孩子索引,注意这里的数组越界处理改为了传入的heapLength if (leftChildIndex < heapLength && minHeap[leftChildIndex] < minHeap[swapIndex])swapIndex = leftChildIndex;if (rightChildIndex < heapLength && minHeap[rightChildIndex] < minHeap[swapIndex])swapIndex = rightChildIndex;// 判断交换索引和当前索引是不是一样,如果不一样说明要交换,继续SiftDown,直到到最后一个节点if (curIndex != swapIndex){HeapSwap(minHeap, curIndex, swapIndex);HeapSiftDown(minHeap, swapIndex, heapLength);}
}
  • HeapBuild函数

注意这里的计算最后一个非叶子节点的索引使用了传入的heapLength,相当于对0-heapLength-1范围的数组建堆

void HeapBuild(vector<int> &array, int heapLength)
{int lastNoLeafIndex = (heapLength - 2) / 2;//注意这里最后一个非叶子节点的索引使用的是传入的heapLengthfor (int i = lastNoLeafIndex; i >= 0; i--)HeapSiftDown(array, i, heapLength);
}

OK我们可以写堆排序了,传入一个数组:

void HeapSort(vector<int> &array)
{int heapLength = array.size();//建堆的长度int len = array.size();//数组的长度HeapBuild(array, heapLength);for (int i = len - 1; i >= 1; --i)//遍历到索引1就行,索引0不需要遍历,因为只有一个数了{HeapSwap(array, 0, i);//把索引0(根节点)和索引i节点交换heapLength--;//建堆的长度减1HeapBuild(array, heapLength);//再次对0~heapLength-1的数组建堆}
}

测试堆排序

#include <iostream>
#include <vector>
using namespace std;
void HeapBuild(vector<int> &array, int heapLength);
void HeapSort(vector<int> &array);void HeapBuild(vector<int> &array, int heapLength)
{int lastNoLeafIndex = (heapLength - 2) / 2;//注意这里最后一个非叶子节点的索引使用的是传入的heapLengthfor (int i = lastNoLeafIndex; i >= 0; i--)HeapSiftDown(array, i, heapLength);
}
void HeapSort(vector<int> &array)
{int heapLength = array.size();//建堆的长度int len = array.size();//数组的长度HeapBuild(array, heapLength);for (int i = len - 1; i >= 1; --i)//遍历到索引1就行,索引0不需要遍历,因为只有一个数了{HeapSwap(array, 0, i);//把索引0(根节点)和索引i节点交换heapLength--;//建堆的长度减1HeapBuild(array, heapLength);//再次对0~heapLength-1的数组建堆}
}
int main()
{vector<int> array{9, 31, 40, 22, 10, 15, 1, 25, 91};cout << "The origin array is " << endl;for (auto &t : array)cout << t << " ";cout << endl<< "---------------------------------------------------" << endl;// sort元素HeapSort(array);cout << "After sort, the array is " << endl;for (auto &t : array)cout << t << " ";return 0;
}

可以看到从大到小进行了排序,如果用大顶堆,就是从小到大排序。
在这里插入图片描述

3.2 优先队列

优先级队列虽然也叫队列,但是和普通的队列还是有差别的。普通队列出队顺序只取决于入队顺序,而优先级队列的出队顺序总是按照元素自身的优先级。可以理解为,优先级队列是一个排序后的队列。

堆和优先级队列非常相似,一个堆就可以看作一个优先级队列。往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素(大顶堆–最大值;小顶堆–最小值)。不过优先级我们还可以自己额外定义。C++有priority_queue来实现,具体可以看c++优先队列(priority_queue)用法详解。

所以优先队列有两个操作,分别是pop弹出和push加入,pop即弹出根节点,push即把新的元素加入优先队列,两种操作过后要保证剩余的元素构成的还是一个堆。直接使用前面所说的pop和push操作即可。

4. 典型例题

347. 前 K 个高频元素

在这里插入图片描述
前K个元素,先用哈希表记录元素的频率,然后可以使用小根堆,如果队列元素超过K可以弹出根节点(最小的元素),遍历完以后,队列里剩下的就是前K大的元素。

class Solution {
public:static bool cmp(pair<int, int>& a, pair<int, int>& b){return a.second > b.second;}vector<int> topKFrequent(vector<int>& nums, int k) {vector<int> ans;unordered_map<int, int> mp;for (auto& t: nums)mp[t]++;priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(&cmp)> que(cmp);for (auto it = mp.begin(); it != mp.end(); ++it){que.push(*it);if (que.size() > k)que.pop();}while (!que.empty()){ans.push_back(que.top().first);que.pop();}return ans;}
};

关于priority_queue的比较函数cmp也可以使用仿函数:

class Solution {
public:class cmp {public:bool operator() (const pair<int, int> &lhs, const pair<int, int> &rhs) {return lhs.second > rhs.second;}};vector<int> topKFrequent(vector<int>& nums, int k) {vector<int> ans;unordered_map<int, int> mp;for (auto& t: nums)mp[t]++;priority_queue<pair<int, int>, vector<pair<int, int>>, cmp> que;for (auto it = mp.begin(); it != mp.end(); ++it){que.push(*it);if (que.size() > k)que.pop();}while (!que.empty()){ans.push_back(que.top().first);que.pop();}return ans;}
};

内置类型比如int的话cmp可以直接使用greater<int>(小根堆)和less<int>(大根堆),如果比较自定义的Node类型,可以在Node里重载<

#include <queue>
#include <iostream>
using namespace std;
struct Node
{int x, y;bool operator<(const Node &rhs) const{return this->x > rhs.x; // 用x比较,这里是>,是小根堆}
};
int main()
{priority_queue<Node> que;que.push(Node{1, 2});que.push(Node{2, 1});que.push(Node{4, 2});while (!que.empty()){cout << que.top().x << " " << que.top().y << endl;que.pop();}
}

在这里插入图片描述

215. 数组中的第K个最大元素

和上题类似,我们使用一个小顶堆,遍历完整个数组,最后剩下的根节点就是第K大元素了。

class Solution {
public:int findKthLargest(vector<int>& nums, int k) {priority_queue<int, vector<int>, greater<int>> que;for (auto& t:nums){que.push(t);if (que.size() > k){que.pop();}}return que.top();}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/650628.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序(十二)在线图标与字体的获取与引入

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.从IconFont获取图标与文字的样式链接 2.将在线图标配置进页面中&#xff08;源码&#xff09; 3.将字体配置进页面文字中&#xff08;源码&#xff09; 4.css样式的多文件导入 获取链接 1.获取图标链接 登入…

ABAP 状态栏排除某些按钮

ABAP 状态栏排除某些按钮 GUI State状态栏 在状态栏这里有这些按钮&#xff0c;现在在导出界面要排除掉这些按钮&#xff1a; 将要排除的按钮追加到gt_code内表&#xff1a; gt_fcode功能码内表的定义 DATA:gt_fcode TYPE TABLE OF sy-ucomm,完整程序 *&---------…

上位机图像处理和嵌入式模块部署(python opencv)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们谈到了qt&#xff0c;谈到了opencv&#xff0c;也谈到了嵌入式&#xff0c;但是没有说明python在这个过程当中应该扮演什么样的角色。open…

【Linux】Linux进程间通信

Linux进程间通信 一、进程间通信介绍1、概念2、进程间通信目的3、进程间通信的本质4、进程间通信分类 二、管道1、什么是管道2、匿名管道&#xff08;1&#xff09;匿名管道原理&#xff08;2&#xff09;pipe函数&#xff08;3&#xff09;匿名管道的使用步骤i、父进程调用pip…

【汇总】解决Spring-Web与Spring-WebFlux冲突

【汇总】解决Spring-Web与Spring-WebFlux冲突 问题发现问题解决问题一&#xff1a;The bean requestMappingHandlerMapping, defined in class path resource [org/springframework/web/reactive/config/DelegatingWebFluxConfiguration.class],问题二&#xff1a;The Java/XML…

贝叶斯增量式跨域适应:少样本 + 跨模态学习 + 知识保留和推断【fundus + OCT】,做视网膜病变

贝叶斯深度学习&#xff1a;增量式少样本学习跨域适应 贝叶斯多目标函数 跨模态学习 fundus OCT&#xff0c;做视网膜病变 核心思想设计网络&#xff1a;寻找分类模型、损失函数实验结果混淆矩阵与注意力图评估 总结 核心思想 论文&#xff1a;https://arxiv.org/pdf/2110.…

数学建模-------误差来源以及误差分析

绝对误差&#xff1a;精确值-近似值&#xff1b; 举个例子&#xff1a;从A到B&#xff0c;应该有73千米&#xff0c;但是我们近似成了70千米&#xff1b;从C到D&#xff0c;应该是1373千米&#xff0c;我们近似成了1370千米&#xff0c;如果使用绝对误差&#xff0c;结果都是3…

代码随想录算法训练营第32天 | 122.买卖股票的最佳时机II + 55. 跳跃游戏 + 45.跳跃游戏II

今日任务 122.买卖股票的最佳时机II 55. 跳跃游戏 45.跳跃游戏II 122.买卖股票的最佳时机II - Medium 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i…

在 ASP.NET Core Web API 中使用操作筛选器统一处理通用操作

前言&#xff1a;什么是操作筛选器 操作筛选器是 ASP.NET Core Web API 中的一种过滤器&#xff0c;用于在执行控制器操作&#xff08;Action&#xff09;之前或之后执行一些代码&#xff0c;完成特定的功能&#xff0c;比如执行日志记录、身份验证、授权、异常处理等通用的处…

Java多线程--线程的生命周期

文章目录 一、JDK1.5之前&#xff1a;5种状态五种状态1、新建2、就绪3、运行4、阻塞5、死亡 二、JDK1.5及之后&#xff1a;六种状态 Java语言使用 Thread类及其子类的对象来表示 线程&#xff0c;在它的一个完整的生命周期中通常要经历如下一些状态。 一、JDK1.5之前&#xf…

搜狐新闻客户端使用Kotlin之后对JSON解析框架的探索

本文字数&#xff1a;7488字 预计阅读时间&#xff1a;45分钟 01 引言 自2017年Google发布Kotlin语言之后&#xff0c;Android开发由原来的Java开始向Kotlin过度&#xff0c;目前绝大部分Android开发岗位基本要求就是熟练使用Kotlin。事实上&#xff0c;很多有着多年历史的项目…

CAD-autolisp(二)——选择集、命令行设置对话框、符号表

目录 一、选择集1.1 选择集的创建1.2 选择集的编辑1.3 操作选择集 二、命令行设置对话框2.1 设置图层2.2 加载线型2.3 设置字体样式2.4 设置标注样式&#xff08;了解即可&#xff09; 三、符号表3.1 简介3.2 符号表查找3.2 符号表删改增 一、选择集 定义&#xff1a;批量选择…

【广度优先搜索】【拓扑排序】【C++算法】913. 猫和老鼠

作者推荐 【动态规划】【map】【C算法】1289. 下降路径最小和 II 本文涉及知识点 广度优先搜索 拓扑排序 逆推 LeetCode913. 猫和老鼠 两位玩家分别扮演猫和老鼠&#xff0c;在一张 无向 图上进行游戏&#xff0c;两人轮流行动。 图的形式是&#xff1a;graph[a] 是一个列…

List使用addAll()方法报错

当使用Arrays.asList方式创建出来的list&#xff0c;在使用addAll方法的时候报错如下&#xff1a; Exception in thread "main" java.lang.UnsupportedOperationException 这个问题记录下&#xff0c;以防以后忘记。 下面是代码 List<String> objects new A…

风口抓猪-借助亚马逊云科技EC2服务器即刻构建PalWorld(幻兽帕鲁)私服~~~持续更新中

Pocketpair出品的生存类游戏《幻兽帕鲁》最近非常火&#xff0c;最高在线人数已逼近200万。官方服务器亚历山大&#xff0c;游戏开发商也提供了搭建私人专用服务器的方案&#xff0c;既可以保证稳定的游戏体验&#xff0c;也可以和朋友一起联机游戏&#xff0c;而且还能自定义经…

LeetCode:1706. 球会落何处(Java 模拟)

目录 1706. 球会落何处 题目描述&#xff1a; 实现代码与解析&#xff1a; 原理思路&#xff1a; 1706. 球会落何处 题目描述&#xff1a; 用一个大小为 m x n 的二维网格 grid 表示一个箱子。你有 n 颗球。箱子的顶部和底部都是开着的。 箱子中的每个单元格都有一个对角线…

如何实现无公网IP实现远程访问MongoDB文件数据库

&#x1f4d1;前言 本文主要是如何实现无公网IP实现远程访问MongoDB文件数据库的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x…

移动Web——平面转换-平移

1、平面转换-平移 取值 像素单位数值百分比&#xff08;参照盒子自身尺寸计算结果&#xff09;正负均可 技巧 translate()只写一个值&#xff0c;表示沿着X轴移动单独设置X或Y轴移动距离&#xff1a;translateX()或translateY() <!DOCTYPE html> <html lang"en&q…

53-JS之BOM,打开,关闭窗口,screen对象,history对象,location对象,工作区尺寸,滚动距离

1.简介 BOM(Browser Object Model)---浏览器对象模型,提供JS当中对浏览器的各种操作对象 1.1BOM与DOM 2.打开窗口window.open(URL,name,features) 2.1 URL字符串:地址网址文件源 2.2name:指target属性,规定在哪个窗口打开新的url链接 blank:打开一个新窗口 _parent…

MVC架构模式与三层架构

提示&#xff1a;博客中的图片来源于动力节点在B站的视频讲解。 MVC架构模式与三层架构 一、三层架构二、MVC&#xff08;model view controller&#xff09;1.MVC 架构的工作流程&#xff08;1&#xff09;JSP Servlet javabean实现MVC。&#xff08;2&#xff09;SSM&#…