京东广告算法架构体系建设--在线模型系统分布式异构计算演变 | 京东零售广告技术团队

一、现状介绍

算法策略在广告行业中起着重要的作用,它可以帮助广告主和广告平台更好地理解用户行为和兴趣,从而优化广告投放策略,提高广告点击率和转化率。模型系统作为承载算法策略的载体,目前承载搜索、推荐、首焦、站外等众多广告业务和全链路的深度学习建模,是广告算法算法创新和业务迭代发展的重要基石。

架构全景图:

1.平台能力:

1.高吞吐高并发:百亿PV,百万QPS

2.低延迟,高可靠:万亿次预估计算/秒,毫秒级延迟,99.99%

3.集群规模:1W+节点

4.迭代周期:3次/天

2.系统能力

1.模型规模:TB级模型预估

2.异构计算:CPU/GPU异构计算

3.在线学习:分钟级模型更新

4.实时图计算:亿级节点、百亿级边;分钟级图数据更新

5.层次化算力:实时计算、离线计算、近线计算

二、发展历程

广告在线模型系统发展大致分为三个主要阶段:

1、深度学习时代:通过组件化、平台化、配置化完成架构的统一和流程机制的规范化,解决迭代效率问题。

2、大模型时代:通过分布式分图计算架构解决模型规模和实效性的问题。

3、算力时代:通过层次化算力建设解决全链路算力协同的问题。

1、深度学习时代——架构统一/迭代效率

广告在线模型系统初期缺乏统一的系统架构和流程机制,随着Tensorflow开源,算法的离线调研能力大幅提升,对应的在线模型架构算法迭代效率问题日益凸显。主要面临的问题如下:

业务接入成本高:广告业务涉及的业务较多,包括搜索、推荐、首焦、站外,模型涉及到CTR模型、CVR模型、CPA模型。每个业务都要面临新加广告场景、新加/修改模型,都需要添加额外的开发支持,接入效率低成本高。

特征繁多,数据不统一,算法实验低效:1)特征来源较多,有商品特征、用户特征、请求特征,没有统一的数据使用规范。2)特征种类也比较多,每个业务用的特征也比较独立,不利于复用。

算法和工程耦合:算法模型强依赖算法服务,模型结构修改都要带来服务修改,影响模型迭代。缺乏配置化导致算法扩展困难。

为了解决以上问题,我们将整体框架进行模块化升级,抽象出三个核心模块:

◦模型接入服务:负责流量管控,统一流量接入规则,与业务逻辑解耦。

◦特征计算服务:负责数据管理和特征提取,统一数据接入规则。

◦模型推理服务:负责模型推理、更新和落日志,统一模型接入规则。

1.1 模型接入

模型接入包含三大功能:

流量路由:流量路由的核心是进行动态流量识别,根据配置动态构建语法树,将流量映射到语法树中,从而做到识别流量全路径,包括流量从哪里来、到哪里去。当有新的流量进入或着加入新的模型,可在语法树中添加或修改叶节点,实现动态路由。同时在分层实验中,使用语法树,也可实现流量分层,增加小流量试验的并发度,提升流量使用效率。

流量分发:根据流量路由结果进行分发,针对广告队列较多的情况,会将请求进行拆分,并行请求特征和模型推理,实现并行加速。

流量防护:对上游来说,通过流量路由拦截异常流量。对下游来说,通过实时监控下游负载,实现动态负载均衡,拦截超负载流量,保护下游服务的安全。

1.2 特征计算

特征计算包含两大功能:

数据管理:1、支持多类型数据源,包括三类:1)解析请求获取请求中的原始特征。2)本地数据支持特征词表获取离线特征。3)远程数据请求用户、商品等服务获取用户商品的实时特征。2、数据统一:通过特征转换统一特征格式,方便模型进行特征解析。

特征计算:将特征计算算子化,通过注册类的方式实现配置化,提升特征开发效率和复用效率。

1.3 模型推理

为了方便算法迭代,将架构拆分成两层,通过分层的设计,将模型和服务解耦,解决架构和模型迭代冲突的问题,提升模型迭代效率。

推理引擎层:推理引擎支持模型推理加速,目前支持多种推理引擎(TensorFlow、TensorRT、FasterTransformer等)

服务层:负责消息处理、特征日志、模型管理。

▪特征日志:支持落实时请求级的特征日志,通过离线拼接生成训练样本。

▪模型管理:通过NormGuard机制对训练模型进行校验,防止将不合规模型推到线上。

1.4 总结

架构上,通过以上服务化、单元化、配置化的升级,实现更高层级的抽象,实现一套架构支持所有算法业务。规范上,实现流量、数据、模型统一标准化。降低算法实验难度,整体迭代周期从周级别提升到天级别,极大提升了算法的迭代效率。

第一阶段的在线模型系统升级,将业务开发由无序到有序,架构从散乱到统一,奠定在线模型系统的基础,也为后续的架构发展提供更多可能。

2、大模型时代——模型规模/时效

平台化加速了模型迭代的同时,业界和广告内部也进入大模型的探索阶段,落地期间遇到模型复杂、参数规模大、时效性低等问题,大模型对算力的需求变得迫切。

模型复杂:深度模型的引入极大加速模型的发展,同时也带来模型复杂度的指数提升,以Transfomer为代表的全新神经网络框架,奠定了大模型的算法架构基础,复杂度的提升对模型计算提出更高的要求。

参数规模大:用户的增长,商品数量的扩展,带来数据量的爆炸,模型为了更好的模拟现实,参数量也成爆炸性增长。从广告场景内看,算法模型的参数规模也从十亿向着百亿、千亿发展,参数规模的增长对模型存储、IO提出了更高的要求。

时效性低:这个阶段模型的更新周期普遍在天级别,实效性较低,尤其在大促人货场发生快速变化的时候,模型更新跟不上用户、商品的变化,会带来搜索/推荐效果折损。

针对以上问题,我们基于离在线一体化设计研发分布式分图计算架构提升算力水平,支持更大参数规模的模型,同时支持OnlineLearning进一步提升时效性,同时在引入图计算提升模型表达能力。

2.1 分布式分图计算架构

1.计算分层:分析复杂的模型网络拓扑结构,基于计算密集逻辑&数据I/O密集进行计算分层

2.存储分层:稀疏&稠密参数分层,充分利用CPU/GPU存储特点

3.离在线一体算力协同:提升模型规模和实效性,做到业界先进水平

效果:

1.在线算力提升10倍+,离线训练性能提升1倍+

2.搜索排序模型参数规模扩大8倍,点消+3%。推荐排序模型升级百G大模型助力算法收益点消+8%。

2.2 OnlineLearning

1.支持增量更新:提供参数增量更新解决方案,更新间隔由天级别缩短为分钟级别。

2.架构高可用,支持快速回滚

效果:

1.系统支持实时流式训练,分钟级别的线上模型增量更新。

2.广告搜索业务双十一大促期间点消共增长+10.47%。

2.3 图计算

模型为了挖掘用户和商品之间的关系,引入实时图关系数据,提升模型表达能力。

1.采用计算和存储分离架构,结构清晰,利于扩展

2.分布式集群存储,毫秒级延迟计算

3.支撑大规模动态图存储,分钟级更新

效果:

1.支撑十亿级节点百亿级边异构图存储的落地

2.多应用场景:推荐我的京东图建模全量上线,点消+3%;推荐首页召回小流量上线,点消+2%。

2.4 总结

分布式分图计算在模型系统平台化的基础上拓展模型计算能力,通过将内存、IO、CPU、GPU等计算资源协同处理实现异构计算能力,通过软硬件协同的方式极大提升GPU的利用率(具体参见“京东广告算法架构体系建设–高性能计算方案最佳实践”),释放模型预估的算力的同时提升模型时效性。

3、算力时代——算力协同

分布式分图计算和GPU硬件的引入横向加速了单模块模型计算,但是随着模型数据和复杂度进一步提升,暴露了更大的算力不足问题,单模块的算力释放已无法满足模型需求。在纵向的全链路算力协同和应用上也面临新的问题:

硬件资源不一致,木桶效应:线上机器硬件不一样,比如不同的机器CPU型号不一致导致算力不平衡

系统耦合,算力无法充分释放:目前模型计算集中在粗排、精排阶段,在整体耗时的约束下,无法充分发挥算力。

为了解决算力协同的问题,我们的区别前面的优化手段,从算法算力架构一体化融合设计优化角度出发,提出新一代工业化深度学习算法架构体系。整个体系包括两部分,分布式分图计算是基座,通过离在线一体和软硬结合的方式实现算力分层,在此算力架构基础上,结合核心算法场景,对系统算力进行了进一步层次划分,算法算力深度结合,落地广告营销多个场景。

3.1 前置计算

精排用户实时行为建模问题,是业界通用的难点问题,行为序列规模的天花板在百级别, 存在严重的算力瓶颈。针对这一问题,我们的做法是算法和架构深度融合,在算法层面,扩充实时建模规模至千级别,架构层面,通过分图架构拆分精排链路增加前置计算层的方法,进一步实现了算法算力的分配,效果非常显著,在耗时0增长的同时,用户实时建模达到千级别,搜索点消+6%。

3.2 近线计算

在召回场景业界通用的难题是在大规模候选集上实现全库策略检索,从算法层面上解决召回链路和后链路建模不一致问题,我们的方法是通过增加近线计算层,协同特征融合、深度模型端到端建模,实现了离线和在线的进一步算力再分配,实现基于深度模型的全库检索能力,与业界先进水平持平,推荐点消+3%。

3.3 算力动态分配

为了降低机器不同带来的算力不平衡,我们引入多目标分级反馈负载均衡策略:

效果:

共计优化机器资源9000C+。

3.4 总结

面对单模块算力再次不足的问题,从纵向全链路算力协同方面,将算力进行精细化分层,通过实时计算、近线计算、离线计算打通,优化算力分配,拓展算力空间。

三、总结展望

广告在线模型系统经过三个阶段的发展和实践,有力的支撑了多条业务线的快速迭代。为了进一步优化算力,提升算力协同,计划强化动态算力分配机制,根据流量价值和用户分层进行算力动态分配,实现有限资源的收益最大化。

动态算力分配策略包括三类:

◦召回控制:通过控制召回分支及召回个数调控算力

◦队列控制:通过控制物料排序个数调控算力

◦模型控制:通过使用算法消耗不同的模型进行打分调控算力

未来,我们会继续围绕算法、算力、架构一体化的思维去不断优化和提升架构计算性能,提升业务迭代效率。

作者:京东零售 齐浩

来源:京东云开发者社区 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/649719.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Word插入音乐视频文件快速方法 exe zip doc apk txt pdf bat等

需求: Word插入文件有哪些极限操作?如何快速插入音乐视频等文件 问题解决: 使用拖动进行文件快速插入(PPT Excle 同理) 操作 1.让文件和word界面处于同一屏幕,可以使用分屏 2.鼠标选中文件左键或者使用笔…

一些反序列化总结

1 反序列化漏洞原理 如果反序列化的内容就是那串字符串,是用户可以控制的(即变量的值),且后台不正当的使用了PHP中的魔法函数,就会导致反序列化漏洞,可以执行任意命令。Java 序列化指 Java 对象转换为字节序…

Flink问题解决及性能调优-【Flink根据不同场景状态后端使用调优】

Flink 实时groupby聚合场景操作时,由于使用的是rocksdb状态后端,发现CPU的高负载卡在rocksdb的读写上,导致上游算子背压特别大。通过调优使用hashmap状态后端代替rocksdb状态后端,使吞吐量有了质的飞跃(20倍的性能提升…

2024年,你是否还在迷茫?

2024年,你是否还在迷茫? 别担心!鸿蒙来了,这个未来技术的制高点,为你提供了答案! 诸多大厂疯抢、24年预计鸿蒙相关的岗位需求将达到百万级、就业均薪达到19K,全国高校开课…… 种种现象都在表…

VirtualBox安装Ubuntu22.04

目录 1、新建虚拟机 1.1、设置内存大小 1.2、创建虚拟硬盘 2、虚拟机设置 2.1、设置启动顺序​编辑 2.2、选择iso镜像文件 2.3、设置网络(桥接网卡) 3、启动 3.1、设置语言环境 3.2、系统更新安装(不更新) 3.3、选择键盘布局(默认即可) 3.4、选择安装类型 3.5、网…

硬件知识(1) 手机的长焦镜头

#灵感# 手机总是配备好几个镜头,研究一下 目录 手机常配备的摄像头,及效果举例 长焦的焦距 焦距的定义和示图: IPC的焦距和适用场景: 手机常配备的摄像头,及效果举例 以下是小米某个手机的摄像头介绍&#xff1a…

EXCEL VBA抓取网页JSON数据并解析

EXCEL VBA抓取网页JSON数据并解析 链接地址: https://api.api68.com/CQShiCai/getBaseCQShiCaiList.do?lotCode10036&date2024-01-26 Sub test() On Error Resume Next Sheet.Select Sheet1.Cells.ClearContents [a1:g1] Split("preDrawIssue|preDrawTi…

用Visual Studio Code创建JavaScript运行环境【2024版】

用Visual Studio Code创建JavaScript运行环境 JavaScript 的历史 JavaScript 最初被称为 LiveScript,由 Netscape(Netscape Communications Corporation,网景通信公司)公司的布兰登艾奇(Brendan Eich)在 …

mysql 存储过程学习

存储过程介绍 1.1 SQL指令执行过程 从SQL执行的流程中我们分析存在的问题: 1.如果我们需要重复多次执行相同的SQL,SQL执行都需要通过连接传递到MySQL,并且需要经过编译和执行的步骤; 2.如果我们需要执行多个SQL指令,并且第二个SQL指令需要…

Topaz Video AI:无损放大,让你的视频更清晰!

在当今的数字时代,视频内容的重要性越来越受到人们的关注。无论是在社交媒体上分享生活片段,还是在商业领域中制作宣传视频,人们都希望能够展现出更高质量的视频内容。 然而,由于各种原因,我们经常会面临一个问题&…

C++版QT:分割窗口

目录 mainwindow.h mainwindow.cpp main.cpp Qt的分割窗口功能允许用户将一个窗口分割成多个区域,每个区域可以独立地显示不同的内容。这种功能在许多应用程序中非常有用,例如编辑器、浏览器和IDE等。 理解Qt的分割窗口,需要从以下几个方面…

音频格式之AAC:(2)AAC封装格式ADIF,ADTS,LATM,extradata及AAC ES存储格式

系列文章目录 音频格式的介绍文章系列: 音频编解码格式介绍(1) ADPCM:adpcm编解码原理及其代码实现 音频编解码格式介绍(2) MP3 :音频格式之MP3:(1)MP3封装格式简介 音频编解码格式介绍(2) MP3 :音频格式之MP3&#x…

IDEA jdk版本切换问题

打开 IntelliJ IDEA 的 Project Structure(快捷键通常是 Ctrl Alt Shift S)。 转到 Project Settings > Modules。 选择相应的模块,然后在 Sources 标签页下,查看 Language level 是否设置为 自己需要的jdk版本语言。 接…

20240125-边界外路径

题目要求 有一个m*n的网格,网格中有一个小球。小球初始位置位[startRow,startColumn]。您可以将小球移动到网格中相邻的四个单元格之一(可能会越过网格边界移出网格)。最多可以对小球进行maxMove移动。 给定 m、n、maxMove、sta…

uniapp导入uView组件库

目录 准备工作 1. 新建一个项目 2. 导入uview组件库 3. 关于SCSS 配置步骤 1. 引入uView主JS库 2. 在引入uView的全局SCSS 3. 引入uView基础样式 4. 配置easycom组件模式 添加效果实验运行即可成功 准备工作 1. 新建一个项目 2. 导入uview组件库 在进行配置之前&#x…

TensorFlow2实战-系列教程2:神经网络分类任务

🧡💛💚TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 1、Mnist数据集 下载mnist数据集: %matplotlib inline from pathlib imp…

使用代码取大量2*2像素图片各通道均值,存于Excel文件中。

任务是取下图RGB各个通道的均值及标签(R, G,B,Label),其中标签由图片存放的文件夹标识。由于2*2像素图片较多,所以将结果放置于Excel表格中,之后使用SVM对他们进行分类。 from PIL import Image import os …

【Linux】查看硬件信息和操作系统信息、安装的应用信息

【Linux】查看硬件信息和操作系统信息、安装的应用信息 一、硬件信息 1.1 CPU信息 cat /proc/cpuinfo #查看 processor : 0 // 逻辑处理器的唯一标识符 physical id : 0 // 硬件上真实存在的CPU siblings : 1 // 一个物理CPU有几个逻辑CPU cpu…

定向减免!函数计算让轻量 ETL 数据加工更简单,更省钱

作者:澈尔、墨飏 业内较为常见的高频短时 ETL 数据加工场景,即频率高时延短,一般均可归类为调用密集型场景。此场景有着高并发、海量调用的特性,往往会产生高额的计算费用,而业内推荐方案一般为攒批处理,业…

ChatGPT+Midjourney+闲鱼赚钱方法实战探索

最近天天在朋友群内看到朋友接单(出售提示词,图片),轻轻松松半小时就赚200-300,特意探索了一下相关玩法,总结出一套ChatGPTMidjourney闲鱼赚钱方法,主打的是易上手,有可操作性! 具体…