【图像分割】【深度学习】Windows10下UNet代码Pytorch实现与源码讲解

【图像分割】【深度学习】Windows10下UNet代码Pytorch实现与源码讲解

提示:最近开始在【医学图像分割】方面进行研究,记录相关知识点,分享学习中遇到的问题已经解决的方法。


文章目录

  • 【图像分割】【深度学习】Windows10下UNet代码Pytorch实现与源码讲解
  • 前言
  • UNet模型运行环境搭建
  • UNet模型运行
    • 数据集与模型权重下载
    • PFNet训练与测试
  • 总结


前言

UNet是由德国弗赖堡大学的Olaf Ronneberger等人在《U-Net: Convolutional Networks for Biomedical Image Segmentation【MICCAI-2015】》【论文地址】一文中提出的U型编码和解码模型,即一个用于捕获上下文的收缩路径(编码器,下采样)和一个支持精确定位的对称扩展路径(解码器,上采样),并通过跳跃连接操作更好的融合浅层的位置信息和深层的语义信息。
在详细解析PFNet网络之前,首要任务是搭建UNet【Pytorch-demo地址】所需的运行环境,并完成模型训练和测试工作,展开后续工作才有意义。
数据预处理模块解析


UNet模型运行环境搭建

  • 查看主机支持的cuda版本(最高)

    # 打开cmd,执行下面的指令查看CUDA版本号
    nvidia-smi
    

  • 安装GPU版本的torch【官网】
    博主的cuda版本是12.2,但这里cuda版本最高也是12.1,博主选的11.8也没问题。
    其他cuda版本的torch在【以前版本】找对应的安装命令。

  • 博主安装环境参考

    # 创建虚拟环境
    conda create -n UNet python=3.9
    # 查看新环境是否安装成功
    conda env list
    # 激活环境
    activate UNet
    # 分别安装pytorch和torchvision
    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    # 查看所有安装的包
    pip list
    conda list
    


UNet模型运行

数据集与模型权重下载

名称下载地址说明
DRIVE数据集【官网】【百度网盘:8no8】用于眼科图像处理研究的公共数据集,用于血管分割任务
模型权重百度网盘: p50a使用U-Net在DRIVE数据集上训练得到的权重,仅供测试使用

将下载好的训练集解压并拷贝到当前工程目录下(建议)

将下载好的预训练权重(训练好的)best_model.pth拷贝到save_weights目录下(建议)。

PFNet训练与测试

  1. 训练:可以直接运行train.py,也可以根据硬件条件修改代码中部分训练参数epochs和batch-size修改训练次数和训练的batchsize等,详细的代码内容将在后续博文中介绍。

    正在训练,训练权重保存在save_weights目录下:

  2. 测试:可以直接运行predict.py,也可以根据任务需求修改代码中部分变量img_path和roi_mask_path等,选择测试的图片。

    对于DRIVE数据集img_path和roi_mask_path必须同时给定且一一对应,其他数据集以及个人数据集的训练和测试,博主会在后续的内容中给出修改后的代码。

    测试结果保存为当前工程目录下的test_result.png,可以对比查看效果:


总结

尽可能简单、详细的介绍了UNet的安装流程以及UNet的使用方法。后续会根据自己学到的知识结合个人理解讲解UNet的原理和代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/649684.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL语句创建一个简单的银行数据库

目录 一、银行业务E-R图 二、数据库模型图 转换关系模型后: 三、创建数据库 3.1 创建银行业务数据库 四、创建表 4.1 创建客户信息表 4.2 创建银行卡信息表 4.3 创建交易信息表 4.4 创建存款类型表 结果如下: ​编辑 五、插入适量数据 5.1…

java servlet果蔬产业监管系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web果蔬产业监管系统是一套完善的java web信息管理系统 serlvetdaobean mvc 模式开发 ,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主 要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5…

Ps:将文件载入堆栈

Ps菜单:文件/脚本/将文件载入堆栈 Scripts/Load Files into Stack 将文件载入堆栈 Load Files into Stack脚本命令可用于将两个及以上的文件载入到同一个 Photoshop 新文档中。 载入的每个文件都将成为独立的图层,并使用其原始文件名作为图层名。 Photos…

254.【2023华为OD机试真题】-任务处理(贪心算法-JavaPythonC++JS实现)

🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-任务处理二.解题思路三.题解代码Python题解代码…

AI编译器的后端优化策略

背景 工作领域是AI芯片工具链相关,很多相关知识的概念都是跟着项目成长建立起来,但是比较整个技术体系在脑海中都不太系统,比如项目参与中涉及到了很多AI编译器开发相关内容,东西比较零碎,工作中也没有太多时间去做复盘…

InforSuiteAS中创中间件windows环境部署

版本:InforSuiteAS_StE_V10.0.5.2.1 环境要求:Java环境 DK1.8版本, 内存2GB或以上 , 硬盘空间 10GB或以上, 监视器 图形界面安装需要256色以上,字符界面安装没有色彩要求 ,浏览器 Microsoft …

【华为 ICT HCIA eNSP 习题汇总】——题目集9

1、缺省情况下,广播网络上 OSPF 协议 Hello 报文发送的周期和无效周期分别为()。 A、10s,40s B、40s,10s C、30s,20s D、20s,30s 考点:①路由技术原理 ②OSPF 解析:&…

多进程并发服务器与多线程并发服务器

文章目录 一、多进程并发服务器使用原理难点特点代码 二、多线程并发服务器使用原理难点特点 总结 一、多进程并发服务器 多进程并发服务器是一种经典的服务器架构,它通过创建多个子进程来处理客户端连接,从而实现并发处理多个客户端请求的能力。 使用…

React16源码: React中commitAllHostEffects内部的commitWork的源码实现

commitWork 1 )概述 在 react commit 阶段的 commitRoot 第二个while循环中调用了 commitAllHostEffects,这个函数不仅仅处理了新增节点,若一个节点已经存在,当它有新的内容要更新或者是它的attributes要更新这个时候&#xff0c…

向量数据库知识积累

前言 前文4篇文章主要介绍了MySQL与Redis相关知识,可能某些同学看来略显枯燥。本文基于最近大热的aigc,介绍其中的核心工具,内部数据存储:向量数据库。本人在最近的项目中也是初次使用了向量数据库,对其中的向量处理、…

臻于至善,CodeArts Snap 二维绘图来一套不?

前言 我在体验 华为云的 CodeArts Snap 时,第一个例子就是绘制三角函数图像,功能注释写的也很简单。 业务场景中,有一类就是需要产出各种二维图形的,比如,折线图、散点图、柱状图等。 为了提前积累业务素材&#xf…

Docker数据卷挂载(以容器化Mysql为例)

数据卷 数据卷是一个虚拟目录,是容器内目录与****之间映射的桥梁 在执行docker run命令时,使用**-v 本地目录:容器目录**可以完成本地目录挂载 eg.Mysql容器的数据挂载 1.在根目录root下创建目录mysql及三个子目录: cd ~ pwd m…

GitBook可以搭建知识库吗?有无其他更好更方便的?

在一个现代化的企业中,知识是一项宝贵的资产。拥有一个完善的企业知识库,不仅可以加速员工的学习和成长,还能提高工作效率和团队协作能力。然而,随着企业不断发展和扩大规模,知识库的构建和管理变得更加复杂和耗时。 |…

mysql的联合索引利用情况

目录 查询条件对应的列值的类型与列对应的类型不一致 只有一个联合索引且包含非主键外全部列 查询条件全部为等值查询 查询条件有范围查询 有联合索引未包含全部列 在使用 mysql 进行数据存储时,经常用到联合索引,但是使用联合索引有一些注意点&…

git checkout和git switch的区别

git checkout 和 git switch 是 Git 中用于切换分支的命令,但它们在某些方面有一些区别。需要注意的是,git switch 是在 Git 2.23 版本引入的,它提供了一种更直观的分支切换方式。 git checkout: 分支切换: 在 Git 2.…

初学数据结构:Java对象的比较

目录 1. PriorityQueue中插入对象2. 元素的比较2.1 基本类型的比较2.2 对象比较的问题 3. 对象的比较3.1 基于Comparable接口类的比较3.2 基于比较器比较3.3 三种方式对比 4. 集合框架中PriorityQueue的比较方式5. 使用PriorityQueue创建大小堆,解决TOPK问题 【本节…

PyTorch 中的nn.Conv2d 类

nn.Conv2d 是 PyTorch 中的一个类,代表二维卷积层(2D Convolution Layer)。这个类广泛用于构建卷积神经网络(CNN),特别是在处理图像数据时。 基本概念 卷积: 在神经网络的上下文中,卷积是一种特…

llamaindex 集成本地大模型

从​​​​​​​​​​​​​​用llamaindex 部署本地大模型 - 知乎Customizing LLMs within LlamaIndex Abstractions 目的:llamaindex 是一个很好的应用框架,基于此搭建一个RAG应用是一个不错的选择,但是由于llamaindex默认设置是openai的…

FlashInternImage实战:使用FlashInternImage实现图像分类任务(一)

文章目录 摘要安装包安装timm 数据增强Cutout和MixupEMA项目结构编译安装DCNv4环境安装过程配置CUDAHOME解决权限不够的问题 按装ninja编译DCNv4 计算mean和std生成数据集 摘要 https://arxiv.org/pdf/2401.06197.pdf 论文介绍了Deformable Convolution v4(DCNv4&…

【MQ02】基础简单消息队列应用

基础简单消息队列应用 在上一课中,我们已经学习到了什么是消息队列,有哪些消息队列,以及我们会用到哪个消息队列。今天,就直接进入主题,学习第一种,最简单,但也是最常用,最好用的消息…