TensorFlow2实战-系列教程1:回归问题预测

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

1、环境测试

import tensorflow as tf
import numpy as np
tf.__version__

打印结果

‘2.10.0’

x1 =[[1,9],[3,6]]
x2 = tf.constant(x1)
print(x1)
print(x2)

打印结果:

[[1, 9], [3, 6]]
tf.Tensor( [[1 9] [3 6]], shape=(2, 2), dtype=int32)

2、导包读数据

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
warnings.filterwarnings("ignore")
%matplotlib inlinefeatures = pd.read_csv('temps.csv')
features.head()

打印结果:

在这里插入图片描述

  • year,moth,day,week分别表示的具体的时间
  • temp_2:前天的最高温度值
  • temp_1:昨天的最高温度值
  • average:在历史中,每年这一天的平均最高温度值
  • actual:这就是我们的标签值了,当天的真实最高温度
  • friend:这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了

星期是个文本特性,用onehot转换一下:

features = pd.get_dummies(features)
features.head(5)

在这里插入图片描述

3、标签制作与数据预处理

# 标签
labels = np.array(features['actual'])# 在特征中去掉标签
features= features.drop('actual', axis = 1)# 名字单独保存一下,以备后患
feature_list = list(features.columns)# 转换成合适的格式
features = np.array(features)

打印结果:

(348, 14)

from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]

打印结果:

array([ 0. , -1.5678393 , -1.65682171, -1.48452388, -1.49443549, -1.3470703 , -1.98891668, 2.44131112, -0.40482045, -0.40961596, -0.40482045, -0.40482045, -0.41913682, -0.40482045])

4、 基于Keras构建网络模型

常用参数:

  • activation:激活函数的选择,一般常用relu
  • kernel_initializer,bias_initializer:权重与偏置参数的初始化方法
  • kernel_regularizer,bias_regularizer:要不要加入正则化
  • inputs:输入,可以自己指定,也可以让网络自动选 units:神经元个数

按顺序构造网络模型:

model = tf.keras.Sequential()
model.add(layers.Dense(16))
model.add(layers.Dense(32))
model.add(layers.Dense(1))
  1. 创建一个执行序列
  2. 添加全连接层,16个神经元
  3. 添加全连接层,32个神经元
  4. 添加全连接层,1个神经元,作为最后的输出

定好优化器和损失函数,然后训练:

model.compile(optimizer=tf.keras.optimizers.SGD(0.001), loss='mean_squared_error')
model.fit(input_features, labels, validation_split=0.25, epochs=10, batch_size=64)
  1. 指定SGD为优化器学习率为0.001,MSE为损失函数
  2. 指定数据和标签然后训练,25%为验证集,10个epochs

打印结果:

Epoch 1/10 5/5 - 0s 33ms/step - loss: 4267.9907 val_loss: 3133.0610
Epoch 2/10 5/5 0s 4ms/step - loss: 1925.8059 - val_loss: 3318.1531
Epoch 3/10 5/5 - 0s 3ms/step - loss: 181.2731 val_loss: 2728.9922
Epoch 4/10 5/5 0s 3ms/step - loss: 104.3410 - val_loss: 2093.8855
Epoch 5/10 5/5 - 0s 3ms/step - loss: 77.6116 - val_loss: 1377.6144
Epoch 6/10 5/5 0s 3ms/step - loss: 73.3877 - val_loss: 1163.6123
Epoch 7/10 5/5 0s 3ms/step - loss: 60.4262 val_loss: 867.4617
Epoch 8/10 5/5 0s 3ms/step - loss: 73.3110 - val_loss: 654.7820
Epoch 9/10 5/5 0s 3ms/step - loss: 36.6109 val_loss: 581.9786
Epoch 10/10 5/5 0s 3ms/step - loss: 56.6764 - val_loss: 383.0244
<keras.callbacks.History at 0x22634a22760>

从打印结果来看,训练集的损失和验证集的损失差距比较大,可能出现过拟合的现象

输入数据:

input_features.shape

打印结果:

(348, 14)

查看网络结构:

model.summary()

打印结果:

Model: “sequential”


Layer (type) Output Shape Param #

dense (Dense) multiple 240


dense_1 (Dense) multiple 544


dense_2 (Dense) multiple 33

Total params: 817
Trainable params: 817
Non-trainable params: 0


5、改初始化方法

model = tf.keras.Sequential()
model.add(layers.Dense(16,kernel_initializer='random_normal'))
model.add(layers.Dense(32,kernel_initializer='random_normal'))
model.add(layers.Dense(1,kernel_initializer='random_normal'))
model.compile(optimizer=tf.keras.optimizers.SGD(0.001), loss='mean_squared_error')
model.fit(input_features, labels, validation_split=0.25, epochs=100, batch_size=64)

部分打印结果:

Epoch 99/100 261/261 0s 42us/sample - loss: 27.9759 - val_loss: 41.2864
Epoch 100/100 261/261 0s 42us/sample - loss: 44.5327 - val_loss: 48.2574

很显然差距消失了

6、加入正则化惩罚项

model = tf.keras.Sequential()
model.add(layers.Dense(16,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.03)))
model.add(layers.Dense(32,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.03)))
model.add(layers.Dense(1,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.03)))
model.compile(optimizer=tf.keras.optimizers.SGD(0.001), loss='mean_squared_error')
model.fit(input_features, labels, validation_split=0.25, epochs=100, batch_size=64)

部分打印结果:

Epoch 99/100 261/261 0s 42us/sample - loss: 26.2268 - val_loss: 20.5562
Epoch 100/100 261/261 0s 42us/sample - loss: 24.3962 - val_loss: 21.1083

很显然结果更好了

7、展示测试结果

# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) # 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60'); 
plt.legend()# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/649603.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年材料、控制工程与制造技术国际学术会议(ICMCEMT 2024)

2024年材料、控制工程与制造技术国际学术会议(ICMCEMT 2024) 2024 International Conference on Materials, Control Engineering, and Manufacturing Technology (ICMCEMT 2024) 会议简介&#xff1a; 2024年材料、控制工程与制造技术国际学术会议(ICMCEMT 2024)定于2024年在…

分布式因果推断在美团履约平台的探索与实践

美团履约平台技术部在因果推断领域持续的探索和实践中&#xff0c;自研了一系列分布式的工具。本文重点介绍了分布式因果树算法的实现&#xff0c;并系统地阐述如何设计实现一种分布式因果树算法&#xff0c;以及因果效应评估方面qini_curve/qini_score的不足与应对技巧。希望能…

ERROR Failed to get response from https://registry.npm.taobao.org/ 错误的解决

这个问题最近才出现的。可能跟淘宝镜像的证书到期有关。 解决方式一&#xff1a;更新淘宝镜像&#xff08;本人测试无效&#xff0c;但建议尝试&#xff09; 虽然无效&#xff0c;但感觉是有很大关系的。还是设置一下比较好。 淘宝镜像的地址&#xff08;registry.npm.taobao…

【计算机网络】协议,电路交换,分组交换

定义了在两个或多个通信实体之间交换的报文格式和次序,以及报文发送和/或接收一个报文或其他事件所采取的动作.网络边缘: 端系统 (因为处在因特网的边缘) 主机 端系统 客户 client服务器 server今天大部分服务器都属于大型数据中心(data center)接入网(access network) 指将端…

Visual Studio 2022 C++ 生成dll或so文件在windows或linux下用C#调用

背景 开发中我们基本使用windows系统比较快捷&#xff0c;但是部署的时候我们又希望使用linux比较便宜&#xff0c;硬件产商还仅提供了c sdk&#xff01;苦了我们做二次开发的码农。 方案 需要确认一件事&#xff0c;目前c这门语言不是跨平台的 第一个问题【C生成dll在window…

nav02 学习03 机器人传感器

机器人传感器 移动机器人配备了大量传感器&#xff0c;使它们能够看到和感知周围的环境。这些传感器获取的信息可用于构建和维护环境地图、在地图上定位机器人以及查看环境中的障碍物。这些任务对于能够安全有效地在动态环境中导航机器人至关重要。 机器人的传感器类似人的感官…

二极管漏电流对单片机ad采样偏差的影响

1&#xff0c;下图是常规的单片机采集电压电路&#xff0c;被测量电压经过电阻分压&#xff0c;给到mcu采集&#xff0c;反向二极管起到钳位作用&#xff0c;避免高压打坏mcu。 2&#xff0c;该电路存在的问题 二极管存在漏电流&#xff0c;会在100k电阻上产生叠加电压&#x…

qt 坦克大战游戏 GUI绘制

关于本章节中使用的图形绘制类&#xff0c;如QGraphicsView、QGraphicsScene等的详细使用说明请参见我的另一篇文章&#xff1a; 《图形绘制QGraphicsView、QGraphicsScene、QGraphicsItem、Qt GUI-CSDN博客》 本文将模仿坦克大战游戏&#xff0c;目前只绘制出一辆坦克&#…

Oracle RAC 集群的安装(保姆级教程)

文章目录 一、安装前的规划1、系统规划2、网络规划3、存储规划 二、主机配置1、Linux主机安装&#xff08;rac01&rac02&#xff09;2、配置yum源并安装依赖包&#xff08;rac01&rac02&#xff09;3、网络配置&#xff08;rac01&rac02&#xff09;4、存储配置&#…

c语言实现—动态通讯录

一.前言 上次带大家认识了一下顺序表&#xff0c;其实我们可以在顺序表的基础上实现一个通讯录的小项目&#xff0c;通讯录的本质仍然是顺序表&#xff0c;所以如果下面的代码你有问题的话&#xff0c;先去看看我的上篇文章哦~。 通讯录的功能大家应该都知道吧&#xff0c;这次…

chroot: failed to run command ‘/bin/bash’: No such file or directory

1. 问题描述及原因分析 在busybox的环境下&#xff0c;执行 cd rootfs chroot .报错如下&#xff1a; chroot: failed to run command ‘/bin/bash’: No such file or directory根据报错应该rootfs文件系统中缺少/bin/bash&#xff0c;进入查看确实默认是sh&#xff0c;换成…

【微信小程序】浮动按钮拖动功能

在开发过程中无意间想到了这个功能。一番查询之后找到这个功能相关的代码片段。拷贝过来之后各种报错&#xff0c;经过自己的整改以可以使用。 功能图片&#xff1a; 中间的微信按钮可以拖动 wxml&#xff1a;页面代码 <button catchtouchmove"buttonMove" cat…

五、Kotlin 函数进阶

1. 高阶函数 1.1 什么是高阶函数 以下 2 点至少满足其一的函数称为高阶函数&#xff1a; 形参列表中包含函数类型的参数 //参数 paramN 可以是&#xff1a;函数引用、函数类型变量、或 Lambda 表达式。 fun funName(param1: Type1, param2: Type2, ... , paramN: (p1: T1, p2…

2.数据结构 顺序表(自留笔记)

文章目录 一.静态顺序表&#xff1a;长度固定二.动态顺序表1.下面证明原地扩容和异地扩容代码如下&#xff1a;2.下面是写一段Print&#xff0c;打印数字看看&#xff1a;3.头插4.尾删5.头删6.越界一定会报错吗7.下标插入8.下标删除9.查找数字10.应用&#xff1a;利用顺序表写一…

Linux:用户切换指令su

相关文章 Linux专栏https://blog.csdn.net/weixin_45791458/category_12234591.html su是一个常用的用户切换命令&#xff0c; 用于在不同的用户身份之间切换&#xff0c;下面是它的用法。 用法&#xff1a; su [-] [-lmpVh] [-s shell] [-c command] [-w list] [username] 选…

【网络协议测试】畸形数据包——圣诞树攻击(DOS攻击)

简介 TCP所有标志位被设置为1的数据包被称为圣诞树数据包&#xff08;XMas Tree packet&#xff09;&#xff0c;之所以叫这个名是因为这些标志位就像圣诞树上灯一样全部被点亮。 标志位介绍 TCP报文格式&#xff1a; 控制标志&#xff08;Control Bits&#xff09;共6个bi…

淘宝扭蛋机小程序:新时代的互动营销与娱乐体验

随着科技的快速发展&#xff0c;小程序已经成为人们日常生活中不可或缺的一部分。在众多的小程序中&#xff0c;淘宝扭蛋机小程序以其独特的互动性和趣味性&#xff0c;吸引了大量用户。本文将深入探讨淘宝扭蛋机小程序的特色、用户体验以及未来发展。 一、淘宝扭蛋机小程序的…

API网关-Apisix RPM包方式自动化安装配置教程

文章目录 前言一、简介1. etcd简介2. APISIX简介3. apisix-dashboard简介 二、Apisix安装教程1. 复制脚本2. 增加执行权限3. 执行脚本4. 浏览器访问5. 卸载Apisix 三、命令1. Apisix命令1.1 启动apisix服务1.2 停止apisix服务1.3 优雅地停止apisix服务1.4 重启apisix服务1.5 重…

jenkins发布失败

今天用jenkins发布项目时失败了&#xff0c;而前几天还好好的。 云控制台看了下&#xff0c;发现根本就没打包。 报错如下&#xff1a; 从控制台可以看出&#xff0c;项目依赖没有下载下来&#xff0c;所以打包失败了。 根本原因是&#xff1a;在配置中给yarn指定的淘宝仓库…

python爬虫采集下载中国知网《出版来源导航》论文文献下载_PDF文档_数据采集知网爬虫论文Python3

时隔一年&#xff0c;很久没更新博客了。今天给大家带来一个python3采集中国知网 &#xff1a;出版来源导航 这个是网址是中国知网的&#xff0c;以下代码仅限于此URL&#xff08;出版来源导航&#xff09;采集&#xff0c;知网的其他网页路径采集不一定行&#xff0c;大家可以…