20240126请问在ubuntu20.04.6下让GTX1080显卡让whisper工作在large模式下?

20240126请问在ubuntu20.04.6下让GTX1080显卡让whisper工作在large模式下?
2024/1/26 21:19

问GTX1080模式使用large该如何配置呢?
这个问题没有完成,可能需要使用使用显存更大的显卡了!
比如GTX1080Ti 11GB,更猛的可以选择:RTX2080TI 22GB了!

以下四种large模式都异常了!
large
large-v1
large-v2
large-v3


rootroot@rootroot-X99-Turbo:~$ 
rootroot@rootroot-X99-Turbo:~$ watch -n 2 nvidia-smi
rootroot@rootroot-X99-Turbo:~$ whereis whisper
whisper: /home/rootroot/.local/bin/whisper

rootroot@rootroot-X99-Turbo:~$ 

root@rootroot-X99-Turbo:/# 
root@rootroot-X99-Turbo:/# find . -name whisper
./usr/lib/x86_64-linux-gnu/espeak-ng-data/voices/!v/whisper
./home/rootroot/.cache/whisper
./home/rootroot/.local/bin/whisper
./home/rootroot/.local/lib/python3.8/site-packages/whisper
./home/rootroot/3TB/76Android11.0/out3/.path/whisper
./home/rootroot/3TB/76Android11.0/out/.path/whisper
find: ‘./run/user/1000/gvfs’: Permission denied
root@rootroot-X99-Turbo:/# 
root@rootroot-X99-Turbo:/# whereis whisper
whisper:
root@rootroot-X99-Turbo:/# 
root@rootroot-X99-Turbo:/# 


https://www.bilibili.com/read/cv29388784/?jump_opus=1
【教程】利用whisper模型自动生成英文粗字幕

运行环境
硬件
NVIDIA GeForce 3090 GPU with 24GB VRAM

该模型理论上也能在CPU环境下运行,但极慢。GPU运行也需要占用较大显存。官方提供了多种规模的变体,所需显存从1GB-10GB不等(如下图)

软件
Ubuntu 18.04

理论上来说Windows和MacOS也是支持的,不过我没有尝试过

PyTorch 1.11.1

官方说的是在1.10.1上训练的,不过这个影响不大

操作步骤
克隆项目仓库 git clone https://github.com/openai/whisper.git
从源码安装Python包 pip install .
命令行使用 whisper audio.aac --model large-v3 --device cuda
whisper chs.mp4 --model large-v3 --device cuda

rootroot@rootroot-X99-Turbo:~/chs/large$ whisper chs.mp4 --model large-v3 --device cuda
Traceback (most recent call last):
  File "/home/rootroot/.local/bin/whisper", line 31, in <module>
    sys.exit(cli())
  File "/home/rootroot/.local/lib/python3.8/site-packages/whisper/transcribe.py", line 458, in cli
    model = load_model(model_name, device=device, download_root=model_dir)
  File "/home/rootroot/.local/lib/python3.8/site-packages/whisper/__init__.py", line 156, in load_model
    return model.to(device)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1160, in to
    return self._apply(convert)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  [Previous line repeated 2 more times]
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 833, in _apply
    param_applied = fn(param)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1158, in convert

    return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacty of 7.92 GiB of which 22.75 MiB is free. Including non-PyTorch memory, this process has 7.54 GiB memory in use. Of the allocated memory 7.09 GiB is allocated by PyTorch, and 351.95 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory
Management and PYTORCH_CUDA_ALLOC_CONF
rootroot@rootroot-X99-Turbo:~/chs/large$ 
rootroot@rootroot-X99-Turbo:~/chs/large$ 


https://www.bilibili.com/read/cv27732514/
OpenAI 发布新版开源语音识别模型 whisper-large-v3


https://zhuanlan.zhihu.com/p/618140077
ChatGPT开源的whisper音频生成字幕,可本地搭建环境运行,效果质量很棒

Model = 'large-v2' #@param ['tiny.en', 'tiny', 'base.en', 'base', 'small.en', 'small', 'medium.en', 'medium', 'large', 'large-v2']

https://blog.csdn.net/lusing/article/details/132032965
2023年的深度学习入门指南(24) - 处理音频的大模型 OpenAI Whisper

我们还可以用model参数来选择模型,比如有10GB以上显存就可以选择使用large模型:
whisper va2.mp3 --model large --language Chinese
默认是small模型。还可以选择tiny, base, medium, large-v1和large-v2.

百度:UBUNTU 显存占用
https://www.bmabk.com/index.php/post/162904.html
Ubuntu显卡占用情况实时监控

每隔2s刷新一次内存使用情况
watch -n 2 free -m
watch -n 1 free -m
watch -n 0.5 free -m


https://blog.csdn.net/weixin_44554475/article/details/102909308
ubuntu实时显示网速cpu占用和内存占用率

1、ubuntu实时显示网速cpu占用率和内存占用率参考博客:
https://www.cnblogs.com/hjw1/p/7901048.html

2、ubuntu实时显示显存使用率:
此处的2表示没2秒显示一次显存情况

watch -n 2 nvidia-smi

3、安装htop查看内存情况:
安装:sudo apt-get install htop
启动: htop

4 ubuntu config clash for windows
https://hiif.ong/clash


https://blog.csdn.net/N1CROWN/article/details/122662706?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-122662706-blog-102909308.235^v43^pc_blog_bottom_relevance_base1&spm=1001.2101.3001.4242.1&utm_relevant_index=3
Ubuntu16.04 标题栏显示实时网速、CPU使用率

sudo apt-get install python3-psutil curl git gir1.2-appindicator3-0.1

cd indicator-sysmonitor
sudo make install
nohup indicator-sysmonitor &


https://www.toutiao.com/article/7315080543987597864/?app=news_article&timestamp=1706252345&use_new_style=1&req_id=2024012614590561ABBE53940F817BA3B3&group_id=7315080543987597864&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=e7d4aa95-92fe-45b6-9dc3-6570888672ab&source=m_redirect
Distil Whisper开源,语音识别比Whisper更快更小更准

https://blog.csdn.net/zcxey2911/article/details/134202112?spm=1001.2101.3001.4242.3&utm_medium=distribute.wap_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-4-134202112-blog-130588477.237%5Ev3%5Ewap_relevant_t0_download&share_token=70d15c8b-cc0b-4ca6-8e5b-31a19ce3c062
持续进化,快速转录,Faster-Whisper对视频进行双语字幕转录实践(Python3.10)


https://blog.csdn.net/qq_48424581/article/details/134113540?share_token=53aba00d-104f-4b3b-be19-4da75f7897d7
3.6 模型的选择,参考如下
_MODELS = {
    "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
    "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
    "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
    "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
    "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
    "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
    "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
    "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
    "large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
    "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
    "large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
}


https://www.bilibili.com/read/cv20881630/
免费离线语音识别神器whisper安装教程

补充说明:上图中CUDA 11.6和CUDA 11.7都是gpu版本的软件,我一开始下载的也是gpu版本的,但是因为我的电脑显卡的显存比较低,运行whisper模型的时候大模型运行不了。下图是whisper官方给出的运行模型所需显存。

我的显存是4GB,一旦使用whisper运行small模式以上的模型就会报显存不足的错误。为了能运行更大的模型以保证语音识别较高的准确率,我最终只能选择安装cpu版本。 作者:1590856 https://www.bilibili.com/read/cv20881630/ 出处:bilibili

当然还有其他的模型可供选择,可以在命令行运行whisper --help查看帮助。有以下11种模式可供选择。

[--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large}] 作者:1590856 https://www.bilibili.com/read/cv20881630/ 出处:bilibili

https://blog.csdn.net/nikolay/article/details/128951413?share_token=92623f2c-9ed4-483e-9c79-8fcf83f08221
使用openai-whisper 语音转文字

使用CUDA
执行如下指令,安装带cuda 的pytorch

pip uninstall torch
pip cache purge
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
--device cuda 使用device参数 指定 cuda

whisper 屋顶.mp3 --language zh --model small --device cuda --initial_prompt "以下是普通话的句子。"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/649510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++(Qt)软件调试---静态分析工具clang-tidy(18)

C(Qt)软件调试—静态分析工具clang-tidy&#xff08;18&#xff09; 文章目录 C(Qt)软件调试---静态分析工具clang-tidy&#xff08;18&#xff09;1、概述2、clang-tidy基本用法3、目前已有检查项4、Qt Creator中安装clang-tidy5、Qt Creator中使用clang-tidy6、Clang-Tidy配置…

websocket 通信协议

websocket是什么 答: 它是一种网络通信协议&#xff0c;是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 意思就是服务器可以主动向客户端推送信息&#xff0c;客户端也可以主动向服务器发送信息 属于服务器推送技术的一种. 为什么需要websocket? 疑问?…

修复WordPress内部服务器错误的步骤及解决方案

WordPress是一款广泛使用的开源内容管理系统&#xff0c;但在使用过程中&#xff0c;可能会遇到各种内部服务器错误。这些错误可能由于多种原因引起&#xff0c;例如插件冲突、文件权限问题、服务器配置不当等。为了帮助您快速解决这些问题&#xff0c;本文将为您提供一套详细的…

数据结构排序算详解(动态图+代码描述)

目录 1、直接插入排序&#xff08;升序&#xff09; 2、希尔排序&#xff08;升序&#xff09; 3、选择排序&#xff08;升序&#xff09; 方式一&#xff08;一个指针&#xff09; 方式二&#xff08;两个指针&#xff09; 4、堆排序&#xff08;升序&#xff09; 5、冒…

equence to Sequence Learning with Neural Networks 导读

本文介绍了一种基于深度神经网络&#xff08;DNN&#xff09;的序列到序列学习方法&#xff0c;该方法使用多层长短时记忆网络&#xff08;LSTM&#xff09;将输入序列映射为固定维度向量&#xff0c;并使用另一个深LSTM解码目标序列。在英语到法语翻译任务上&#xff0c;该方法…

QtRVSim(二)一个 RISC-V 程序的解码流程

继上一篇文章简单代码分析后&#xff0c;本文主要调研如何实现对指令的解析运行。 调试配置 使用 gdb 工具跟踪调试运行。 c_cpp_properties.json 项目配置&#xff1a; {"name": "QtRvSim","includePath": ["${workspaceFolder}/**&quo…

Spring5系列学习文章分享---第五篇(事务概念+特性+案例+注解声明式事务管理+参数详解 )

目录 事务事务概念什么是事务事务四个特性&#xff08;ACID&#xff09; 搭建事务操作环境Spring 事务管理介绍注解声明式事务管理声明式事务管理参数配置XML 声明式事务管理事务操作&#xff08;完全注解声明式事务管理&#xff09;感谢阅读 开篇: 欢迎再次来到 Spring 5 学习…

3. MATLAB中Plot绘制放大特定的区域

在MATLAB中&#xff0c;我们经常需要绘制图形并进行一些自定义的操作。在本示例中&#xff0c;我们将演示如何在MATLAB中绘制一个图形&#xff0c;并通过放大某个特定的区域来突出显示。 ## 原始图形 首先&#xff0c;我们绘制了一个包含正弦和余弦函数的图形。 % MATLAB 代…

RabbitMQ 笔记二

1.Spring 整合RabbitMQ 生产者消费者 创建生产者工程添加依赖配置整合编写代码发送消息 创建消费者工程添加依赖配置整合编写消息监听器 2.创建工程RabbitMQ Producers spring-rabbitmq-producers <?xml version"1.0" encoding"UTF-8"?> <pr…

【计算机图形学】实验五 一个简单的交互式绘图系统(实验报告分析+截图+源码)

可以先看一看这篇呀~【计算机图形学】专栏前言-CSDN博客https://blog.csdn.net/m0_55931547/article/details/135863062 目录 一、实验目的 二、实验内容

77 C++对象模型探索。虚函数- 从静态联编,动态联编出发,分析 虚函数调用问题探究

什么叫做单纯的类&#xff1a; 比较简单的类&#xff0c;尤其不包括 虚函数 和虚基类。 什么叫不单纯的类&#xff1a; 从上一章的学习我们知道&#xff0c;在某些情况下&#xff0c;编译器会往类内部增加一些我们看不见但是真实存在的成员变量&#xff0c;例如vptr&#xff…

【shell-10】shell实现的各种kafka脚本

kafka-shell工具 背景日志 log一.启动kafka->(start-kafka)二.停止kafka->(stop-kafka)三.创建topic->(create-topic)四.删除topic->(delete-topic)五.获取topic列表->(list-topic)六. 将文件数据 录入到kafka->(file-to-kafka)七.将kafka数据 下载到文件-&g…

Linux内核中USB设备驱动实现

USB 设备驱动&#xff1a; 一、USB 描述符&#xff1a;&#xff08;存在于USB 的E2PROM里面&#xff09; 1、 设备描述符&#xff1a;struct usb_device_descriptor 2、 配置描述符&#xff1a;struct usb_config_descriptor 3、 接口描述符&#xff1a;struct usb_interfa…

【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签

本文是在前面两篇文章的基础上&#xff0c;讲解如何更改训练数据集颜色&#xff0c;需要与前面两篇文章连起来看。 本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致&#xff0c;对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集&#xff0…

Git标签推送

标签默认属于本地分支&#xff0c;推送分支的时候并不会上传。需要自己手动推送 通过命令 git push origin <tagname>推送指定的标签 通过命令git push origin --tags批量推送所有的标签 在VS里打开git命令行窗口的方法&#xff1a;Git更改-操作-打开命令行提示符 对于…

1.19信息学,信息熵(wordle)

所谓均方误差实际上就是方差 分析&#xff1a;对单词进行编码后&#xff0c;采用聚类方法&#xff0c;可以将单词难度分为三类或者更多&#xff0c;如困难、一般、简单。然后对每一类的单词可视化分析&#xff0c;并描述数据得出结论。 聚类算法较多&#xff0c;在论文中可以…

Docker镜像

创建镜像有三种方法&#xff0c;分别为基于已有镜像创建、基于本地模板创建以及基于Dockerfile创建。 基于现有镜像创建 首先启动一个镜像&#xff0c;在容器里做修改 然后将修改后的容器提交为新的镜像&#xff0c;需要使用该容器的 ID 号创建新镜像 常用选项&#xff1a; -…

【Unity】【游戏开发】Pico打包后项目出现运行时错误如何Debug

【背景】 开发过程中的报错可以通过控制台查看&#xff0c;但是PICO项目这类依赖特定设备环境的应用往往存在打包后在设备端发生运行时错误。这时如何能查看到Debug信息呢&#xff1f; 【分析】 Pico也是安卓系统&#xff0c;所以这个问题就可以泛化为Unity有哪些在安卓端运…

C++实现推箱子游戏

推箱子游戏 运行之后的效果如视频所示&#xff0c;在完成游戏后播放音乐 准备工作&#xff1a;建立一个新的文件夹&#xff0c;并在文件夹中任意增加一张背景图片&#xff0c;以及各个部件的照片文件 因为这里用到了贴图技术&#xff0c;要使用graphic.h这个函数&#xff0c…

海外云手机三大优势

在全球化潮流下&#xff0c;企业因业务需求对海外手机卡等设备的需求不断攀升&#xff0c;推动了海外云手机业务的蓬勃发展。相较于自行置备手机设备&#xff0c;海外云手机不仅能够降低成本&#xff0c;还具备诸多优势&#xff0c;让我们深入探讨其中的三大黄金优势。 经济实惠…