目标检测 - RCNN系列模型

文章目录

    • 1. RCNN
    • 2. Fast-RCNN
    • 3. Faster-RCNN

1. RCNN

论文:Rich feature hierarchies for accurate object detection and semantic segmentation

地址:https://arxiv.org/abs/1311.2524

在这里插入图片描述

分为两个阶段:

  • 目标候选框Object Proposals
  • Proposals缩放后放入CNN网络

目标候选框的实现:区域提案方法(Extract region proposals):使用选择性搜索selective search提取2000个候选区域,经过得到的(x',y',w',h')与现实标注(x,y,w,h)以欧式距离损失做回归

对候选框bounding box进行评分和整合。

selective search

使用一种过分隔方法,将图片分隔成比较小的区域

计算所有临近区域之间的相似性,包括颜色、纹理、尺度等

将相似度比较高的区域合并到一起

计算合并区域和临近区域到相似度

迭代合并,知道整个图片变成一个区域。

在这里插入图片描述

在选取候选框的时候,除了选择性搜索,还可以使用边缘框edge boxes的方法。

在这里插入图片描述

RCNN过程

  • 一张图像生成1000到2000个候选区域(使用selective search方法)
  • 对每个候选区域,使用深度网络提取特征(卷积池化)
  • 特征送入每一类SVM分类器,判别是否属于该类
  • 使用回归器精细修正候选框位置

在这里插入图片描述

不是一个端到端的结构,整体结构比较松散。

  1. 候选区域的生成

    利用Selective Search算法通过图像分割的方法得到一些原始区域,然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体。

  2. 对每个候选区域,使用深度网络提取特征

    将2000个候选区域缩放到 277 × 277 p i x e l 277\times 277 pixel 277×277pixel,接着将候选区域输入事先训练好的AlexNet CNN网络中,获取4096维到特征,得到 2000 × 4096 2000\times 4096 2000×4096维矩阵。

    在这里插入图片描述

  3. 特征送入每一类的SVM分类器,判定类别

    2000 × 4096 2000\times4096 2000×4096维特征与20个SVM组成的权值矩阵 4096 × 20 4096\times20 4096×20相乘,获得 2000 × 20 2000\times20 2000×20维矩阵表示每个建议框是某个目标类别的得分。分别对上述 2000 × 20 2000\times20 2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框。

  4. 使用回归器精细修正候选框位置 - 依然是针对CNN输出的特征向量进行预测

    对NMS处理后剩余的建议框进一步筛选。接着分别用20个回归器对上述20个类别中剩余的建议框进行回归操作,最终得到每个类别的修正后的得分最高的bounding box。

    如图,黄色框口P表示建议框Region Proposal,绿色窗口G表示世纪框Ground Truth,红色窗口 G ^ \hat G G^表示Region Proposal进行回归后的预测窗口,可以用最小二乘法解决的线性回归问题。

在这里插入图片描述

非极大值抑制(NMS)

非极大值抑制,为了去除冗余的检测框。

在对conv5后的特征图,接入SVM进行打分,打好分后做非极大值抑制。

非极大值抑制过程:

  • 假设有3个框,根据SVM的打分顺序:概率从大到小为A、B、C
  • 判断B、C与A的重复率IoU是否大于阀值,如果大于阀值,则丢弃。如果小于阀值,则保留。
  • 保留下来的框,根据打分排序,重复上诉过程。

在这里插入图片描述

IoU 交并比

在这里插入图片描述

Bounding-box regression是用来微调窗口的。

(x,y,w,h)x,y为平移,w,h为尺度缩放。

RCNN框架

在这里插入图片描述


2. Fast-RCNN

论文:Fast R-CNN

地址:https://arxiv.org/abs/1504.08083

Fast R-CNN是继R-CNN之后的又一力作。同样使用VGG16作为网络的backbone,与R-CNN相比,训练时间快6倍,测试推理时间快213倍,准确率从62%提升至66%(在Pascal VOC数据集上)。

Fast RCNN算法流程

  • 一张图像生成1000到2000个候选区域(使用Selective Search方法)
  • 将图像输入网络得到相应的特征图,将SS算法生成的候选框投影到特征图上获得相应的特征矩阵
  • 将每个特征矩阵通过ROI Pooling层缩放到 7 × 7 7\times 7 7×7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。

在这里插入图片描述

一次性计算整张图像特征。不限制输入图像的尺寸。Fast-RCNN将整张图像送入网络,紧接着从特征图上提取相应的候选区域。这些候选区域的特征不需要再重复计算。而对于R-CNN,是一次将候选框区域输入卷积神经网络得到特征。

分类器,输出N+1个类别的概率(N为检测目标的种类,1为背景),用N+1个节点。

边界框回归器,输出对应N+1个类别的候选边界框回归参数 ( d x , d y , d w , d h ) (d_x,d_y,d_w,d_h) (dx,dy,dw,dh),共 ( N + 1 ) × 4 (N+1)\times4 (N+1)×4个节点。

在这里插入图片描述

Fast RCNN损失函数

在这里插入图片描述

分类损失: L c l s ( p , u ) = − l o g p u L_{cls}(p,u) = -logp_u Lcls(p,u)=logpu

边界框回归损失:
L l o c ( t u , v ) = ∑ i ∈ { x , y , w , h } s m o o t h L 1 ( t i u − v i ) s m o o t h L 1 ( x ) = { 0.5 x 2 i f ∣ x ∣ < 1 ∣ x ∣ − 0.5 o t h e r w i s e L_{loc}(t^u,v) = \sum_{i\in\{x,y,w,h\}}smooth_{L_1}(t^u_i-v_i) \\ smooth_{L_1}(x) = \begin{cases} 0.5x^2 \ \ \ if |x|<1 \\ |x|-0.5 \ \ \ otherwise \end{cases} Lloc(tu,v)=i{x,y,w,h}smoothL1(tiuvi)smoothL1(x)={0.5x2   ifx<1x0.5   otherwise

补充:Cross Entropy Loss交叉熵损失

  1. 针对多分类问题(softmax输出,所有输出概率和为1)
    H = − ∑ i o i ∗ l o g ( o i ) H = -\sum_io^*_ilog(o_i) H=ioilog(oi)

  2. 针对二分类问题(sigmoid输出,每个输出节点之间互不干预)
    H = − 1 N ∑ i = 1 N [ o i ∗ l o g o i + ( 1 − o i ∗ ) l o g ( 1 − o i ) ] H = -\frac{1}{N}\sum^N\limits_{i=1}[o^*_ilogo_i+(1-o^*_i)log(1-o_i)] H=N1i=1N[oilogoi+(1oi)log(1oi)]
    其中 o i ∗ o^*_i oi为真实标签值, o i o_i oi为预测值,默认 l o g log log e e e为底等于 l n ln ln

Fast RCNN框架

在这里插入图片描述


3. Faster-RCNN

论文:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

网址:https://arxiv.org/abs/1506.01497

Faster RCNN是继Fast RCNN后的又一力作。同样适用VGG16作为网络的backbone。

RNP+Fast R-CNN

Faster RCNN算法流程

  • 将图像输入网络得到相应的特征图
  • 使用RPN结构生成候选框,将RPN生成的候选框投影到特征图上获得相应的特征矩阵
  • 将每个特征矩阵通过ROI Pooling层缩放到 7 × 7 7\times 7 7×7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。

在这里插入图片描述

RPN网络

在这里插入图片描述

对于特征图上的每个 3 × 3 3\times 3 3×3的滑动窗口,计算出滑动窗口中心点对应原始图像上的中心点,并计算出k个anchor boxes(注意和proposal的差异)

在这里插入图片描述

需要提前设定好k个不同尺寸比例的anchor。在faster rcnn中给了三个尺度和三个比例。

三种尺度(面积): 12 8 2 , 25 6 2 , 51 2 2 128^2,256^2,512^2 128225625122,(面积具体数字,论文中说是根据经验所得)

三种比例: 1 : 1 , 1 : 2 , 2 : 1 1:1,1:2,2:1 1:11:22:1

意思就是,在 12 8 2 128^2 1282这个尺度上,有 1 : 1 , 1 : 2 , 2 : 1 1:1,1:2,2:1 1:11:22:1三个anchor,在 25 6 2 256^2 2562这个尺度上,有 1 : 1 , 1 : 2 , 2 : 1 1:1,1:2,2:1 1:11:22:1三个anchor,在 51 2 2 512^2 5122这个尺度上,有 1 : 1 , 1 : 2 , 2 : 1 1:1,1:2,2:1 1:11:22:1三个anchor。分别来负责检测不同大小的物体。

每个位置(每个滑动窗口)在原图上都对应有 3 × 3 = 9 3\times 3=9 3×3=9个anchor。

但是存在一个问题,VGG的感受野为228,那怎么去预测一个比它大的目标的边界框呢?如去预测 25 6 2 , 51 2 2 256^2,512^2 25625122尺度上的物体。论文中说,通过一个小的感受野去预测一个比它大的目标的边界框是有可能的,根据经验,我们看到一个物体的一部分,可以猜出这个物体的位置区域。

对于一张 1000 × 600 × 3 1000\times 600\times 3 1000×600×3的图像,大约有 60 × 40 × 9 ( 20 k ) 60\times 40\times 9(20k) 60×40×9(20k)个anchor,忽略跨越边界的anchor以后,剩下约 6 k 6k 6k个anchor。对于RPN生成的候选框之间存在大量重叠,基于候选框的 c l s cls cls得分,采用非极大值抑制, I o U IoU IoU设置为0.7,这样每张图片只剩2k个候选框。

在原论文中k=9

利用RPN生成的边界框回归参数将anchor调整到我们所需要的候选框。

对于每张图片,上万个anchor中,采样256个anchor,由正样本和负样本两部分组成,比例大概为1:1。如果正样本个数不足128,则用负样本进行填充。

定义为正样本的方式:

  • 只要anchor与ground-truth box的IoU大于0.7,则这个anchor为正样本。
  • anchor与某个ground-truth box拥有最大的IoU,则也认为它为正样本。

定义为负样本的方式:

  • 与所有ground-truth box的IoU小于0.3的anchor,则定义为负样本

对于正样本与负样本之外的所有anchor,则丢弃掉。

RPN损失函数

在这里插入图片描述

  • p i p_i pi表示第 i i i个anchor存在目标的概率
  • p i ∗ p^*_i pi当为正样本时为1,当为负样本时为0
  • t i t_i ti表示预测第 i i i个anchor的边界框回归参数
  • t i ∗ t^*_i ti表示第 i i i个anchor对应的GT Box
  • N c l s N_{cls} Ncls表示第一个mini-batch中的所有样本数量256
  • N r e g N_{reg} Nreg表示anchor位置的个数(不是anchor个数)约2400

分类损失:二值交叉熵损失

回归损失:

在这里插入图片描述

Faster R-CNN训练

直接采用RPN Loss + Fast R-CNN Loss的联合训练方法

原论文中采用分别训练RPN以及Fast R-CNN的方法:

  • 利用ImageNet预训练分类模型初始化前置卷积网络层参数,并开始单独训练RPN网络参数。
  • 固定RPN网络独有的卷积层以及全连接层参数,再利用ImageNet预训练分类模型初始化前置卷积网络参数,并利用RPN网络生成的目标建议框去训练Fast RCNN网络参数。
  • 固定利用Fast RCNN训练好的前置卷积网络层参数,去微调RPN网络独有的卷积层以及全连接层参数。
  • 同样保持固定前置卷积网络层参数,去微调Fast RCNN网络的全连接层参数。最后RPN网络与Fast RCNN网络共享前置卷积网络层参数,构成一个统一网络。

Faster-RCNN框架

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/647980.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法------(10)堆

例题&#xff1a;&#xff08;1&#xff09;AcWing 838. 堆排序 我们可以利用一个一维数组来模拟堆。由于堆本质上是一个完全二叉树&#xff0c;他的每个父节点的权值都小于左右子节点&#xff0c;而每个父节点编号为n时&#xff0c;左节点编号为2*n&#xff0c;右节点编号为2*…

kubeSphere DevOps自定义容器 指定nodejs版本

✨✨✨✨✨✨ &#x1f380;前言&#x1f381;基于内置镜像构建&#x1f381;把镜像添加基础容器中&#x1f381;检查容器是否配置成功&#x1f381;不生效的原因排查&#x1f381;按步骤执行如下命令 &#x1f380;前言 由于我本地的开发环境node是16.18.1,而自带容器node的版…

VUE项目目录与运行流程(VScode)

各目录对应名称含义 main.js&#xff08;导入App.vue&#xff0c;基于App.vue创建结构渲染index.html&#xff09; //核心作用&#xff1a;导入App.vue&#xff0c;基于App.vue创建结构渲染index.html//1.导入Vue核心包 import Vue from vue//2.导入App.vue根组件 import App f…

MSB20M-ASEMI小功率家电专用MSB20M

编辑&#xff1a;ll MSB20M-ASEMI小功率家电专用MSB20M 型号&#xff1a;MSB20M 品牌&#xff1a;ASEMI 封装&#xff1a;UMSB-4 最大重复峰值反向电压&#xff1a;1000V 最大正向平均整流电流(Vdss)&#xff1a;2A 功率(Pd)&#xff1a;50W 芯片个数&#xff1a;4 引…

20240122面试练习题10

1. Redis为什么执行这么快&#xff1f; 二、Redis为什么这么快&#xff1f; 1、完全基于内存&#xff0c;数据存在内存中&#xff0c;绝大部分请求是纯粹的内存操作&#xff0c;非常快速&#xff0c;跟传统的磁盘文件数据存储相比&#xff0c;避免了通过磁盘IO读取到内存这部分…

微软 AD |域控制器 | 组件 | 域服务 | 对象解析

介绍 Active Directory&#xff08;AD&#xff09;&#xff0c;是微软的目录服务&#xff0c;提供强大的功能和管理体系&#xff0c;用于组织管理和安全存储网络上的资源和用户、计算机、服务对象等信息。 AD 功能&#xff1a; 身份验证和访问控制&#xff1a; 提供集中式的身…

Kubernets Deployment详解

因为Pod生命周期是短暂的&#xff0c;一旦运行完成则立即回收&#xff0c;且涉及Pod的创建、自愈、删除等操作比较复杂&#xff0c;所以很少在Kubernetes中直接使用Pod。而是使用更高级的称为Controller&#xff08;控制器&#xff09;的抽象层&#xff0c;来完成对Pod的创建、…

为什么时序逻辑电路会落后一拍?

1、时序逻辑电路落后一拍&#xff1f; FPGA初学者可能经常听到一句话&#xff1a;“时序逻辑电路&#xff0c;或者说用 < 输出的电路会延迟&#xff08;落后&#xff09;一个时钟周期。”但在仿真过程中经常会发现不符合这一“定律”的现象–明明是在仿真时序逻辑&#xff…

工业4.0开放平台通信 统一架构OPC UA的一种测试方法

工业4.0和工业物联网&#xff08;Industrial Internet of Things, IIoT&#xff09;的核心挑战在于设备、机器以及来自不同行业服务之间的安全和标准化的数据和信息交换。 2016年11月工业4.0平台发布了指导纲要《工业4.0产品需要实现哪些准则》&#xff0c;即对于所有位于工业…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-Tag标签管理实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…

1174:长整数排序(指针专题)

题目描述 长整数排序。输入n 然后输入n个位数不超过100位的大整数&#xff0c;输入的整数可能含有前导0。将这n个长整数排序后输出&#xff0c;输出不含前导0。int greater(char *s1, char *s2){若s1指向的整数大于s2指向的整数&#xff0c;返回一个正整数;若s1指向的整数小于s…

看门狗定时器

1. 看门狗 看门狗: 用于设备在 程序异常(死机) 时 可以自动重启设备 实现原理: 通过定时器 进行定时 , 在定时器时间结束前 进行 "喂狗" 重置定时器时间 若时间到,还没有"喂狗",系统重启 本质就是一个定时器, 如何定时? 定时器 本质是对 晶振时钟进行 计…

Leetcode—144. 二叉树的前序遍历【简单】

2023每日刷题&#xff08;九十六&#xff09; Leetcode—144. 二叉树的前序遍历 实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr…

物业app开发成功案例:如何满足用户需求

在当今数字化时代&#xff0c;物业管理已经不再是一个简单的领域。随着智能手机的普及和移动互联技术的发展&#xff0c;许多物业管理公司纷纷投入物业App开发&#xff0c;以提升管理效率、改善用户体验。本文将介绍一个成功的案例&#xff0c;探讨如何满足用户需求。 物业App…

vue —— h函数的学习与使用

文章目录 一、h函数是什么&#xff1f;二、h函数格式说明及使用示例1&#xff1a;简单创建一个VNode&#xff08;vue3&#xff09;示例2&#xff1a;vue2中h函数用法示例3&#xff1a;vue3中h函数的用法vue2和vue3中h函数的区别&#xff1f; 三、h函数实现原理四、h函数常用场景…

800G光传输网络中的相干调制与PAM4技术

在800G光传输网络架构中&#xff0c;相干调制技术和PAM4&#xff08;四电平脉冲幅度调制&#xff09;技术各具优势&#xff0c;分别针对不同应用场景提供高效解决方案。 相干调制是高级光通信的核心技术之一&#xff0c;它通过精密操控光载波的频率、相位和振幅来编码信息&…

HMI-Board以太网数据监视器(二)MQTT和LVGL

E ∫ d E ∫ k d q r 2 k L ∫ d q r 2 E \int dE \int \frac{kdq}{r^2} \frac{k}{L} \int \frac{dq}{r^2} E∫dE∫r2kdq​Lk​∫r2dq​ E Q 2 π ϵ L 2 E \frac{Q}{2\pi\epsilon L^2} E2πϵL2Q​ Γ ( n ) ( n − 1 ) ! ∀ n ∈ N \Gamma(n) (n-1)!\quad\forall n…

JavaScript 学习笔记(WEB APIs Day4)

「写在前面」 本文为 b 站黑马程序员 pink 老师 JavaScript 教程的学习笔记。本着自己学习、分享他人的态度&#xff0c;分享学习笔记&#xff0c;希望能对大家有所帮助。推荐先按顺序阅读往期内容&#xff1a; 1. JavaScript 学习笔记&#xff08;Day1&#xff09; 2. JavaSc…

C#使用RabbitMQ-1_Docker部署并在c#中实现简单模式消息代理

介绍 RabbitMQ是一个开源的消息队列系统&#xff0c;实现了高级消息队列协议&#xff08;AMQP&#xff09;。 &#x1f340;RabbitMQ起源于金融系统&#xff0c;现在广泛应用于各种分布式系统中。它的主要功能是在应用程序之间提供异步消息传递&#xff0c;实现系统间的解耦和…

pytorch学习笔记(十一)

优化器学习 把搭建好的模型拿来训练&#xff0c;得到最优的参数。 import torch.optim import torchvision from torch import nn from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear from torch.utils.data import DataLoaderdataset torchvision.datas…