18.四数之和
给你一个由 n
个整数组成的数组 nums
,和一个目标值 target
。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]]
(若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a
、b
、c
和d
互不相同nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
思路:
四数之和,和三数之和是一个思路,都是使用双指针法, 基本解法就是在三数之和的基础上再套一层for循环。
三数之和 (opens new window)的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。
那么一样的道理,五数之和、六数之和等等都采用这种解法。
思考:判断nums[k] > target
就返回了吗?
三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。
核心代码:
for (int k = 0; k < nums.size(); k++) {// 剪枝处理if (nums[k] > target && nums[k] >= 0) {break; // 这里使用break,统一通过最后的return返回}// 对nums[k]去重if (k > 0 && nums[k] == nums[k - 1]) {continue;}for (int i = k + 1; i < nums.size(); i++) {// 2级剪枝处理if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {break;}// 对nums[i]去重if (i > k + 1 && nums[i] == nums[i - 1]) {continue;}int left = i + 1;int right = nums.size() - 1;while (right > left) {// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {right--;// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {left++;} else {result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});// 对nums[left]和nums[right]去重while (right > left && nums[right] == nums[right - 1]) right--;while (right > left && nums[left] == nums[left + 1]) left++;// 找到答案时,双指针同时收缩right--;left++;}}}}return result;
这一期专栏记录将我每天的刷题,希望各位的监督,也希望和各位共勉。
追光的人,终会光芒万丈!!