助力工业生产质检,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建生产制造场景下布匹瑕疵缺陷检测识别分析系统

纯粹的工业制造没有办法有长久的发展过程,转制造为全流程全场景的生产智造才是未来最具竞争力的生产场景,在前面的开发实践中我们已经涉足工业生产场景下进行了很多实地的项目开发,如:PCB电路板缺陷检测、焊接缺陷检测、螺母螺钉缺损检测等等,本文的主要目的就是想要基于v7系列的模型来开发构建纺织生产场景下的布匹瑕疵检测识别系统。

布匹瑕疵检测在我们前面的文章中已经有了相关的实践,感兴趣的话可以自行移步阅读即可:

《基于YOLO实践布匹缺陷检测》

《布匹瑕疵检测实践大全,基于yolov5全系列模型[n/s/m/l/x]开发构建布匹瑕疵检测模型,对比分析各个模型性能差异》​​​​​​《集成注意力机制基于YOLOv5开发构建布匹瑕疵检测识别系统》

《助力工业生产“智造”,基于YOLOv8全系列模型【n/s/m/l/x】开发构建纺织生产场景下布匹瑕疵检测识别系统》

 本文主要是选择YOLOv7来开发实现检测模型,我们开发了三款不同参数量级的模型用于整体对比分析,首先看下实例效果:

简单看下实例数据情况:

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 15# class names
names: ['chongzhan', 'cuohua', 'fengtou', 'fengtouyin', 'huamao', 'laban', 'louyin', 'podong', 'qita', 'secha', 'shuiyin', 'wangzhe', 'zhanwu', 'zhezi', 'zhici']

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss曲线】

对比来看:tiny轻量级的模型并没有被yolov7l和yolov7x拉开明显的差距,而l和x两款模型也没有呈现明显的差距,保持相近的结果水平,综合考虑这里我们线上yolov7系列最终选定的是l系列的模型。

接下来以l系列模型为基准,看下详细的结果信息:

【混淆矩阵】

【Batch实例】

【训练可视化】

【PR曲线】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv7-tiny

全系列三个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645439.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用tpu-mlir工具将深度学习算法模型转成算能科技平台.bmodel模型的方法步骤

目录 1 TPU-MLIR简介 2 开发环境搭建 2.1 下载镜像 2.2 下载SDK 2.3 创建容器 2.4 加载tpu-mlir 3 准备工作目录 4 onnx转mlir文件 5 mlir转INT8 模型 5.1 生成校准表 5.2 便以为INT8对称量化模型 参考文献: 之前是用nntc转算能科技的模型的&#xff0c…

YOLO 自己训练一个模型

一、准备数据集 我的版本是yolov8 8.11 这个目录结构很重要 ultralytics-main | datasets|coco|train|val 二、训练 编写yaml 文件 # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path…

【每日一题】3.LeetCode——相交链表

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢迎各位大佬指点&…

向日葵远程控制Mac版权限设置教程解决远程无法控制问题

很多Mac新手安装向日葵远程控制Mac版后,根据提示设置了权限后发现无法远程控制,其实主要是你只勾选了中文的“向日葵权限选项“,而忘记了勾选了向日葵另外一个英文选项权限。 判断是否完全开启控制权限 打开向日葵访问权限设置面板&#xf…

VsCode CMake调试QT QString等变量不显示具体值,调试中查看qt源码 (可视化调试配置Natvis)

遇到的问题 当我们在VsCode使用CMake来调试QT程序时,可能会出现变量是十六进制的地址,而看不到具体的值。例如: 如何解决 这时候需要手动设置一下natvis (资源以上传,可以直接下载) 在.vscode文件下找到…

Android-System fastboot 介绍和使用

一、fastboot简介 在android手机中,fastboot是一种比recovery更底层的刷机模式。 实际操作中:fastboot是一种线刷,就是使用USB连接手机的一种刷机模式。相对于某些系统来说,线刷比卡刷更可靠,安全。recovery是一种卡刷…

分布式应用程序设计项目管理

1. 项目的定义 项目是一种特定的、新颖的行动,目的是以有条不紊、逐步的方式构建一个尚未存在确切对应物的未来现实。它是对精心制定的需求的回应,旨在满足业主的需要。项目包括一个可能是物理或智力的目标,并且需要使用给定的资源来执行一系…

SpringMVC-异常处理

目录 HandlerExceptionResolver接口 使用注解实现异常分类管理(ControllerAdvice 和 ExceptionHandler) 使用 ControllerAdvice 对不同的 Controller 分别捕获异常并处理 HandlerExceptionResolver接口 在SpringMVC中,提供了一个全局异常处理器,用于…

特征抽取-----机器学习pycharm软件

导入包 from sklearn.datasets import load_iris # 方法datasets_demo()数据集使用 from sklearn.feature_extraction import DictVectorizer # 方法dict_demo()字典特征抽取用 from sklearn.feature_extraction.text import CountVectorizer # 方法count_demo()文本特征抽…

民用激光雷达行业简析

01. 激光雷达是“机器之眼” • 激光雷达是一个通过发射激光并接受发射激光同时对其进行信号处理,从而获得周边物体距离等信息的主动测量装置。 • 激光雷达主要由光发射、光扫描、光接收三大模块组成。光发射模块集成了驱动、开关和光源等芯片。光接收模块集成了…

【AIGC】Diffusers:扩散模型的开发手册说明2

前言 扩散器被设计成一个用户友好且灵活的工具箱,用于构建适合您用例的扩散系统。工具箱的核心是模型和调度程序。然而 DiffusionPipeline 为方便起见将这些组件捆绑在一起,但您也可以解包管道并分别使用模型和调度程序来创建新的扩散系统。 解构 Stab…

文件备份管理软件系统

1、我解决的问题 避免因为硬盘故障,导致数据丢失; 避免因为中了病毒,文件被加密,无法取回; 避免了员工恶意删除文件; 规范企业内部的文件管理,使它井井有条; 防范于未然,不必再为可能的风险担忧; 2、我的优点 我支持定…

第二篇【传奇开心果系列】beeware的toga开发移动应用示例:手机应用视频播放器

传奇开心果博文系列 系列博文目录beeware的toga开发移动应用示例系列 博文目录一、项目目标二、编程思路三、初步实现项目目标示例代码四、第一次扩展示例代码五、第二次扩展示例代码六、第三次扩展示例代码七、第四次扩展示例代码八、第五次扩展示例代码九、第六次扩展示例代码…

1.19号网络

超时检测 概念 1> 在网络通信中,有很多函数是阻塞函数,会导致进程的阻塞,例如:accept、recv、recvfrom、等等 2> 为了避免进程在阻塞函数处,无休止的等待,我们可以设置一个超时时间,当…

详细分析MybatisPlus中的Page类(附实战)

目录 前言1. 基本知识2. 常用方法3. 实战 前言 由于工作中经常使用到MybatisPlus的框架,对此详细连接Page类有利于开发,更加游刃有余 对于该类的源码:baomidou / mybatis-plus 中的Page源码 MybatisPlus的框架:MyBatis-plus从入…

【操作系统基础】【CPU访存原理】:寄存 缓存 内存 外存、内存空间分区、虚拟地址转换、虚拟地址的映射

存储器怎么存储数据、内存空间分区、虚拟地址转换 计算机的存储器:寄存 缓存 内存 外存(按功能划分) 计算机的处理器需要一个存储器来存储大量的指令和数据以便自己不断取指执行和访问数据。 内存(内存就是运行内存&#xff0c…

java web 校园健康管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web校园健康管理系统是一套完善的java web信息管理系统 ,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysq…

宠物空气净化器怎么挑选?猫用空气净化器品牌性比价推荐

作为一个养猫家庭的主人,每天都要面对一个挑战——清理猫砂盆。那种难以形容的气味实在让人受不了。尤其是家里有小孩和老人,他们偶尔可能会出现过敏性鼻炎等问题,而抵抗力较差的人更容易受到影响。此外,一到换毛季节,…

【基础算法练习】二分模板

文章目录 二分模板题二分的思想C 版本的二分整数二分模板 Golang 版本的二分整数二分模板 例题:在排序数组中查找元素的第一个和最后一个位置题目描述C 版本代码Golang 版本代码 二分模板题 704. 二分查找,这道题目是最经典的二分查找,使用于…

Spring依赖注入之setter注入与构造器注入以及applicationContext.xml配置文件特殊值处理

依赖注入之setter注入 在管理bean对象的组件的时候同时给他赋值,就是setter注入,通过setter注入,可以将某些依赖项标记为可选的,因为它们不是在构造对象时立即需要的。这种方式可以减少构造函数的参数数量,使得类的构…