《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机

文章目录

  • 第 2章感知机
    • 2.1 感知机模型
    • 2.2 感知机学习策略
      • 2.2.1 数据集的线性可分性
      • 2.2.2 感知机学习策略
    • 2.3 感知机学习算法
      • 2.3.1 感知机学习算法的原始形式
      • 2.3.2 算法的收敛性
      • 2.3.3 感知机学习算法的对偶形式
    • 实践:二分类模型(iris数据集)
      • 数据集可视化:
      • Perceptron
      • scikit-learn实例

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论

我算是有点基础的(有过深度学习和机器学的项目经验),但也是半路出家,无论是学Python还是深度学习,都是从问题出发,边查边做,没有系统的学过相关的知识,这样的好处是入门快(如果想快速入门,大家也可以试试,直接上手项目,从小项目开始),但也存在一个严重的问题就是,很多东西一知半解,容易走进死胡同出不来(感觉有点像陷入局部最优解,找不到出路),所以打算系统的学习几本口碑比较不错的书籍。
  书籍选择: 当然,机器学习相关的书籍有很多,很多英文版的神书,据说读英文版的书会更好,奈何英文不太好,比较难啃。国内也有很多书,周志华老师的“西瓜书”我也有了解过,看了前几章,个人感觉他肯能对初学者更友好一点,讲述的非常清楚,有很多描述性的内容。对比下来,更喜欢《统计学习方法》,毕竟能坚持看完才最重要。
  笔记内容: 笔记内容尽量省去了公式推导的部分,一方面latex编辑太费时间了,另一方面,我觉得公式一定要自己推到一边才有用(最好是手写)。尽量保留所有标题,但内容会有删减,通过标黑和列表的形式突出重点内容,要特意说一下,标灰的部分大家最好读一下(这部分是我觉得比较繁琐,但又不想删掉的部分)。
  代码实现: 最后是本章内容的实践,如果想要对应的.ipynb文件,可以留言

第 2章感知机

  感知机 (perceptron) 是二类分类的线性分类模型,其输入为实例的特征向量,输 出为实例的类别,取 +1 和-1 二值。

  感知机对应于输入空间(特征空间)中将实例划 分为正负两类的分离超平面,属于判别模型

  感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此:

  • 导入基于误分类的损失函数,
  • 利用梯度下降法对损失函 数进行极小化,求得感知机模型。

  感知机学习算法具有简单而易于实现的优点,分为 原始形式对偶形式。

2.1 感知机模型

  感知机是一种线性分类模型,属于判别模型。

  感知机模型的假设空间是定义在特征空间中的所有线性分类模型(linear classification modeD 或线性分类器 (linear classifier) ,即函数集合

f ∣ f ( x ) = ω • x + b {{f|f(x) = ω • x + b}} ff(x)=ωx+b

几何解释:线性方程

ω ⋅ x + b = 0 ω\cdot x+b=0 ωx+b=0

  对应于特征空间 R n R^n Rn 中的一个超平面 S , 其中 ω超平面的法向量b超平面的截距

  这个超平面将特征空间划分为两个部分。位于两部分的点(特征向量)分别被分为 正、负两类。因此,超平面 S称为分离超平面 (separating hyperplane) ,如图 2.1 所示。

2.2 感知机学习策略

2.2.1 数据集的线性可分性

  给定一个数据集T:

T = ( x l , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) T = {(x_l ,y_1), (x_2 ,y_2) ,… , (x_n,y_n)} T=(xl,y1),(x2,y2),,(xn,yn)

  其中 , x i ∈ X = R n , y i ∈ Y = ( + 1 , − 1 ) , i = 1 , 2 , … , n x_i \in X = R^n, y_i \in Y=(+1 ,-1) , i= 1 , 2,… , n xiX=Rn,yiY=(+1,1)i=12n

  如果存在某个超乎面 S

ω ⋅ x + b = 0 ω\cdot x+b=0 ωx+b=0

  能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,则称数据集 T 为线性可分数据集( linearly separable data set ) ;否则,称数据集 T 线性不可分

2.2.2 感知机学习策略

  假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练集正实例点和负实例点完全正确分开分离超平面
在这里插入图片描述

  损失函数的一个自然选择是误分类点的总数。但是,这样的损失函数不是连续可导函数,不易优化。损失函数的另一个选择是误分类点到超平面 S 的总距离

  • 输入空间 R n R^n Rn 中任一 x o x_o xo 到超平面 S S S 的 距离:

1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||}|w \cdot x_0+b| ∣∣w∣∣1wx0+b

  • 对于误分类的数据 ( x i , x i ) (x_i,x_i) (xi,xi) 来说,

− y i ( ω ⋅ x i + b ) > O -y_i(ω \cdot x_i+b)>O yi(ωxi+b)>O

  • ω • x i + b > 0 ω • x_i + b > 0 ωxi+b>0 时 , y i = − 1 y_i = -1 yi=1
  • ω • x i + b < 0 ω • x_i + b < 0 ωxi+b<0 时, x i = + 1 x_i = +1 xi=+1
  • 所有误分类点超平面 S总 距离

− 1 ∣ ∣ w ∣ ∣ ∑ x i ∈ M y i ( w ⋅ x 0 + b ) -\frac{1}{||w||}\sum_{x_i\in M}y_i(w \cdot x_0+b) ∣∣w∣∣1xiMyi(wx0+b)

  感知机 s i g n ( w • x + b ) sign(w • x + b) sign(wx+b) 学习的损失函数定义为:

L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x 0 + b ) L(w,b)=-\sum_{x_i\in M}y_i(w \cdot x_0+b) L(w,b)=xiMyi(wx0+b)

  其中 M 为误分类点的集合。

  这个损失函数就是感知机学习的经验风险函数。

2.3 感知机学习算法

  感知机学习问题转化为求解损失函数式的最优化问题,最优化的方法是随 机梯度下降法。

2.3.1 感知机学习算法的原始形式

求参数 w , b w, b wb , 使其为以下损失函数极小化问题的解:

m i n w , b L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) min_{w,b}L(w,b)=-\sum_{x_i\in M}y_i(w \cdot x_i+b) minw,bL(w,b)=xiMyi(wxi+b)

  其中 M 为误分类点的集合。

求解思路:

  • 感知机学习算法是误分类驱动的,具体采用随机梯度下降法 (stochastic gradient descent)。
  • 首先,任意选取一个超平面 w 0 , b 0 w_0,b_0 w0,b0 , 然后用梯度下降法不断地极小化目标函数(损失函数)
  • 极小化过程中不是一次使M 中所有误分类点的梯度下降,而是一次随机 选取一个误分类点使其梯度下降
  • 假设误分类点集合 M 是固定的,那么损失函数 L ( w , b ) L(w,b) L(w,b)梯度由下式给出:

∇ w L ( w , b ) = − ∑ x i ∈ M y i x i \nabla_w L(w,b)=-\sum_{x_i\in M}{y_ix_i} wL(w,b)=xiMyixi

∇ b L ( w , b ) = − ∑ x i ∈ M y i \nabla _b L(w,b)=-\sum_{x_i\in M}{y_i} bL(w,b)=xiMyi

  • 随机选取一个误分类点 ( x i , y i ) (x_i,y_i) xi,yi ω , b ω, b ωb 进行更新:

w ← w + η y i x i w\leftarrow w+ηy_ix_i ww+ηyixi

b ← b + η y i b \leftarrow b+ηy_i bb+ηyi

  式中 η ( 0 < η ≤ 1 ) η(0 <η\leq1) η(0<η1) 是步长,在统计学习中又称为学习率(learning rate) 。

在这里插入图片描述

  这种学习算法直观上有如下解释:

  当一个实例点被误分类,即位于分离超平面的 错误一侧时,则调整 ω, b 的值,使分离超平面向该误分类点的一侧移动,以减少该误分类点与超平面间的距离,直至超平面越过该误分类点使其被正确分类。

2.3.2 算法的收敛性

在这里插入图片描述

  定理表明,误分类的次数 k 是有上界的,经过有限次搜索可以找到将训练数据完 全正确分开的分离超平面。也就是说,当训练数据集线性可分时,感知机学习算法原 始形式迭代是收敛的。

2.3.3 感知机学习算法的对偶形式

  对偶形式的基本想法是,将 ω ω ω b b b 表示为实例 x i x_i xi标记 y i y_i yi线性组合的形式, 通过求解其系数而求得 ω ω ω b b b

在这里插入图片描述

  对偶形式中训练实例仅以内积的形式出现。

  为了方便,可以预先将训练集中实例间的内积计算出来并以矩阵的形式存储,这个矩阵就是所谓的 Gram 矩阵 (Gram matrix):
G = [ x i ⋅ x i ] N × N G=[x_i \cdot x_i]_{N \times N} G=[xixi]N×N

实践:二分类模型(iris数据集)

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
%matplotlib inline
#load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
df.label.value_counts()
=========================
2    50
1    50
0    50
Name: label, dtype: int64

数据集可视化:

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
y = np.array([1 if i == 1 else -1 for i in y])

Perceptron

# 数据线性可分,二分类数据
# 此处为一元一次线性方程
class Model:def __init__(self):self.w = np.ones(len(data[0]) - 1, dtype=np.float32)self.b = 0self.l_rate = 0.1# self.data = datadef sign(self, x, w, b):y = np.dot(x, w) + breturn y# 随机梯度下降法def fit(self, X_train, y_train):is_wrong = Falsewhile not is_wrong:wrong_count = 0for d in range(len(X_train)):X = X_train[d]y = y_train[d]if y * self.sign(X, self.w, self.b) <= 0:self.w = self.w + self.l_rate * np.dot(y, X)self.b = self.b + self.l_rate * ywrong_count += 1if wrong_count == 0:is_wrong = Truereturn 'Perceptron Model!'def score(self):pass

训练

perceptron = Model()
perceptron.fit(X, y)
===============================
'Perceptron Model!'

分类&可视化

x_points = np.linspace(4, 7, 10)
y_ = -(perceptron.w[0] * x_points + perceptron.b) / perceptron.w[1]
plt.plot(x_points, y_)plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

scikit-learn实例

import sklearn
from sklearn.linear_model import Perceptron
===============
sklearn.__version__
'0.21.2'
clf = Perceptron(fit_intercept=True, max_iter=1000, shuffle=True)
clf.fit(X, y)
=================================
Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=1.0,fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None,penalty=None, random_state=0, shuffle=True, tol=0.001,validation_fraction=0.1, verbose=0, warm_start=False)
# Weights assigned to the features.
print(clf.coef_)
===============================
[[ 23.2 -38.7]]
# 截距 Constants in decision function.
print(clf.intercept_)
================================
[-5.]

可视化

# 画布大小
plt.figure(figsize=(10,10))# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

注意 !

在上图中,有一个位于左下角的蓝点没有被正确分类,这是因为 SKlearn 的 Perceptron 实例中有一个tol参数。

tol 参数规定了如果本次迭代的损失和上次迭代的损失之差小于一个特定值时,停止迭代。所以我们需要设置 tol=None 使之可以继续迭代:

clf = Perceptron(fit_intercept=True, max_iter=1000,tol=None,shuffle=True)
clf.fit(X, y)# 画布大小
plt.figure(figsize=(10,10))# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

现在可以看到,所有的两种鸢尾花都被正确分类了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3-深入组件-组件注册和props更多细节

组件注册 定义好的组件需要注册才能被使用。 注册方式有两种 全局注册 局部注册 全局注册 .component() 方法&#xff0c;让组件在当前 Vue 应用中全局可用。 在 main.ts 中 import ./assets/main.cssimport { createApp } from vue import { createPinia } from pinia i…

Nodejs前端学习Day1

妈的&#xff0c;学vue3需要15.0以上的nodejs 文章目录 前言一、学习目标二、学习目录三、为什么JavaScript可以在浏览器中被执行四、为什么JavaScript可以操作DOM和BOM五、浏览器中的JavaScript运行环境总结 前言 妈的&#xff0c;学vue3需要15.0以上的nodejs 一、学习目标 二…

递归和尾递归(用C语言解斐波那契和阶乘问题)

很多人都对递归有了解&#xff0c;但是为尾递归很少&#xff0c;所以这次来专门讲一讲关于尾递归的一些问题。 什么是尾递归 如果一个函数中所有递归形式的调用都出现在函数的末尾&#xff0c;我们称这个递归函数是尾递归的。因为在一些题目的做法中&#xff0c;我们可以发现…

解决 Git:ssh: connect to host github.com port 22: Connection timed out 问题的三种方案

1、问题描述&#xff1a; 其一、整体提示为&#xff1a; ssh: connect to host github.com port 22: Connection timed out fatal: Could not read from remote repository. 中文为&#xff1a; ssh&#xff1a;连接到主机 github.com 端口 22&#xff1a;连接超时 fatal&a…

linux服务器ssh连接慢问题处理

一、 可能导致慢的几个原因 1、网络问题&#xff1a;网络延迟、带宽限制和包丢失等网络问题都有可能导致SSH连接变慢。 2、客户端设置&#xff1a;错误的客户端设置&#xff0c;如使用过高的加密算法或不适当的密钥设置&#xff0c;可能导致SSH连接变慢。 3、服务器负载过高…

使用docker容器 将node应用程序打包成镜像

可以使得node服务应用程序可以通过流水线部署 安装docker 1、注意 我的服务器的系统是 centos7&#xff0c;所以这里写的是在centos7上按照的docker 注意&#xff1a;Docker 要求 CentOS 系统的内容版本高于3.10 uname -r打印&#xff1a;3.10.0-1160.105.1.el7.x86_64 //确定…

leetcode刷题(剑指offer) 240.搜索二维矩阵Ⅱ

240.搜索二维矩阵Ⅱ 编写一个高效的算法来搜索 *m* x *n* 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,4,7,11,15],[2,5,8,12,19],[3,…

27.移除元素(力扣LeetCode)

文章目录 27.移除元素&#xff08;力扣LeetCode&#xff09;题目描述方法一&#xff1a;vector成员函数&#xff1a;erase方法二&#xff1a;暴力解法方法三&#xff1a;双指针法 27.移除元素&#xff08;力扣LeetCode&#xff09; 题目描述 给你一个数组 nums 和一个值 val&…

[每日一题] 01.24 - 求三角形

求三角形 n int(input()) count1 (1 n) * n // 2 count2 n * n lis1 [str(i).zfill(2) for i in range(1,count1 1)] lis2 [str(i).zfill(2) for i in range(1,count2 1)]for i in range(0,len(lis2),n):print(.join(lis2[i:i n]))print()for i in range(1,n 1):tem…

代码中遇到的问题

编译器错误消息&#xff1a; CS1061&#xff1a; default_aspx 不包含 GridView1_SelectedIndexChanged 的定义&#xff0c;并且找不到接受类型为default_aspx的第一个参数的可访问扩展方法GridView1_SelectedIndexChanged&#xff08;是否缺少 using 指令或程序集引用&#xf…

[笔记]Spring AOP

Spring AOP&#xff08;Aspect Oriented Programming&#xff09; AOP将应用程序分为核心业务和非核心的公共功能&#xff0c;AOP的关注点是系统中的非核心的公共功能&#xff1b; AOP可以通过预编译或者运行期动态代理的方式&#xff0c;为横跨多个对象&#xff08;没有继承关…

UCAS-AOD遥感旋转目标检测数据集——基于YOLOv8obb,map50已达96.7%

1.UCAS-AOD简介 1.1数据说明 遥感图像&#xff0c;又名高分辨率遥感图像。遥感图像的分类依据是根据成像的介质不同来进行分类的。UCAS-AOD (Zhu et al.&#xff0c;2015)用于飞机和汽车的检测&#xff0c;包含飞机与汽车2类样本以及一定数量的反例样本&#xff08;背景&…

【立创EDA-PCB设计基础】6.布线铺铜实战及细节详解

前言&#xff1a;本文进行布线铺铜实战及详解布线铺铜的细节 在本专栏中【立创EDA-PCB设计基础】前面完成了布线铺铜前的设计规则的设置&#xff0c;接下来进行布线 布局原则是模块化布局&#xff08;优先布局好确定位置的器件&#xff0c;例如排针、接口、主控芯片&#xff…

k8s-基础知识(Pod,Deployment,ReplicaSet)

k8s职责 自动化容器部署和复制随时扩展或收缩容器容器分组group&#xff0c;并且提供容器间的负载均衡实时监控&#xff0c;即时故障发现&#xff0c;自动替换 k8s概念及架构 pod pod是容器的容器&#xff0c;可以包含多个container pod是k8s最小可部署单元&#xff0c;容器…

基于python和定向爬虫的商品比价系统实现

目录 前言 一、系统设计 1. 系统需求分析 2. 系统设计思路 二、系统实现 1. 爬虫部分 2. 比价部分 3. 完整系统代码 三、系统优化 1. 多线程爬取 2. 引入数据库 四、总结 前言 商品比价系统是一种可以帮助用户快速找到最优价格商品的系统。本文将介绍如何使用pyth…

查询文件hash值

查询文件hash值 1 Windows 查询文件hash值1.1 certutil -hashfile 文件名 2 Linux 环境查询文件hash值2.1 sha256sum 文件名2.2 md5sum 文件名 1 Windows 查询文件hash值 在某些环境要对比两个文件是否完全一致 1.1 certutil -hashfile 文件名 certutil -hashfile C:\Users\…

【C++ 自写String】

CString.hpp #include <iostream> #include <string.h>#pragma warning(disable:4996) using namespace std;class CString { private:int len;char* data;public:CString():data(nullptr),len(0) {cout << "0空构造\n";}CString(const char* _da…

计算机服务器中了mallox勒索病毒解密方案计划,勒索病毒解密措施

计算机技术的不断应用与发展&#xff0c;为企业的生产运营提供了有利条件&#xff0c;但网络安全威胁无处不在。近期&#xff0c;广西某生物制药企业的计算机服务器遭到了mallox勒索病毒攻击&#xff0c;导致企业的计算机所有重要数据被加密&#xff0c;严重影响企业的生产运营…

【jetson笔记】torchaudio报错

原因是因为pip安装的包与jetson不兼容导致 自己安装或者cmake编译也会报错 需要拉取官方配置好的docker镜像 拉取docker镜像 具体容器可以看官网&#xff0c;按照自己需求拉取即可 https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-ml 如果其他包不需要只需要torc…

2024区块链应用最趋势,RWA实物资产化

作者 张群&#xff08;赛联区块链教育首席讲师&#xff0c;工信部赛迪特聘资深专家&#xff0c;CSDN认证业界专家&#xff0c;微软认证专家&#xff0c;多家企业区块链产品顾问&#xff09;关注张群&#xff0c;为您提供一站式区块链技术和方案咨询。 实物资产通证化&#xff0…