【机器学习】模型的综合评判,备选模型和幸运模型

一、介绍

   在快速发展的机器学习(ML)领域,模型的持续开发和部署对于技术进步和实际应用至关重要。这个生命周期的两个关键阶段是“候选模型”和“祝福模型”。对于任何参与机器学习的人来说,从数据科学家和工程师到依赖这些技术的企业的利益相关者,理解这些阶段都至关重要。本文深入探讨了机器学习工作流程中候选模型和祝福模型之间的特征、重要性以及差异。

   机器学习的每一次伟大旅程都始于创新的一步,并以值得信赖的性能的进步而达到顶峰。从候选模型到受祝福的模型的道路证明了这种对卓越的持久追求。

二、背景

   术语“候选模型”和“幸运模型”用于机器学习中,特别是在模型开发、测试和部署的背景下。

  •    候选模型:候选模型是正在考虑部署的新开发或更新的机器学习模型。它通常处于测试或评估阶段,评估其性能。在此阶段,模型将接受各种测试,包括性能指标(如准确性、精确度、召回率)、鲁棒性、公平性评估和真实场景模拟。它被称为“候选者”,因为它是替换当前部署模型的竞争者,但尚未批准用于生产用途。
  •    幸运模型:术语“幸运模型”是指已经通过所有必要的评估和测试,并已被批准在生产环境中部署的机器学习模型。根据其测试的性能指标,该模型被认为是稳定、可靠和有效的。它是“有福的”,因为它已被认可或批准使用。在生产环境中,受祝福的模型是当前提供预测或执行其设计任务的模型。
       从候选模型到幸运模型的过渡涉及严格的测试,以确保新模型比现有模型表现更好或更高效,而不会引入新问题或偏差。这个过程对于维持和提高现实场景中机器学习应用程序的质量至关重要。

2.1 候选模型

   创新的试验场候选模型代表了机器学习创新的前沿。它本质上是一个原型,通常是为了改进或替换现有模型而开发的。这一阶段的特点是实验,应用新的算法、数据集和调优技术。候选模型是实践中的假设,旨在通过严格的测试和验证来证明其价值。

   评估候选模型的过程是多方面的。它涉及评估准确性、效率、可扩展性和公平性。候选模型可能会根据历史数据进行测试,进行压力测试,或评估偏见和道德影响。此阶段至关重要,因为它决定模型是否已准备好用于实际应用。然而,这也是一个充满挑战的阶段。过度拟合、欠拟合以及保持模型复杂性和泛化性之间的平衡是需要克服的常见障碍。

2.2 幸运的模型

   机器学习可靠性的顶峰 一旦候选模型成功通过评估和测试的考验,它就会提升到受祝福模型的状态。这是被组织“祝福”部署在生产环境中的模型。它证明了该模型的可靠性、有效性以及处理现实世界任务的能力。

   从候选人到受祝福的模特的转变意义重大。它不仅表明了技术优势,还表明了对模型持续且合乎道德地执行能力的信任和信心程度。幸运模型成为衡量所有新候选模型的标准。它是现任冠军,一直保持其地位,直到出现更好的候选模型来挑战其霸主地位。

2.3 对比分析

   从候选模型到幸运模型的旅程从候选模型到幸运模型的旅程是严格测试、验证和改进的叙述。候选模型是关于探索和突破界限的,而幸运模型是关于稳定性和可靠性的。候选模型是创新的,但未经验证,而幸运模型是经过验证且值得信赖的。

   这种转变不仅仅是一个技术过程,还涉及观念的转变。利益相关者必须对模型在现实场景中执行的能力充满信心,而不会产生不可预见的后果。这不仅需要技术验证,还需要透明度、道德考虑,有时甚至需要遵守法规。

三、代码

   使用合成数据集和绘图创建完整的 Python 代码来演示候选模型与幸运模型的概念涉及几个步骤。我们将创建一个综合数据集,构建两个不同的机器学习模型(一个作为候选模型,另一个作为祝福模型),比较它们的性能,并将结果可视化。

   让我们继续使用一个简单的合成数据集进行分类并使用两个不同的模型进行演示的示例。我将使用 Python 的scikit-learn库来构建模型和matplotlib绘图。

   生成综合数据集:我们将创建一个简单的二元分类数据集。
   构建两个不同的模型:一个将是我们的候选模型,另一个将是我们的幸运模型。

  • 评估模型:我们将使用准确度、精确度和召回率等指标来评估两个模型的性能。
  • 绘图:我们将创建绘图来可视化性能差异。
       首先,我们首先编写代码来生成合成数据集并构建模型:

```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier# Generate a synthetic dataset
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# Model 1 (Candidate Model): Logistic Regression
candidate_model = LogisticRegression(random_state=42)
candidate_model.fit(X_train, y_train)
candidate_predictions = candidate_model.predict(X_test)# Model 2 (Blessed Model): Random Forest Classifier
blessed_model = RandomForestClassifier(random_state=42)
blessed_model.fit(X_train, y_train)
blessed_predictions = blessed_model.predict(X_test)# Evaluation
candidate_accuracy = accuracy_score(y_test, candidate_predictions)
candidate_precision = precision_score(y_test, candidate_predictions)
candidate_recall = recall_score(y_test, candidate_predictions)blessed_accuracy = accuracy_score(y_test, blessed_predictions)
blessed_precision = precision_score(y_test, blessed_predictions)
blessed_recall = recall_score(y_test, blessed_predictions)# Plotting performance
labels = ['Accuracy', 'Precision', 'Recall']
candidate_scores = [candidate_accuracy, candidate_precision, candidate_recall]
blessed_scores = [blessed_accuracy, blessed_precision, blessed_recall]x = np.arange(len(labels))
width = 0.35fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, candidate_scores, width, label='Candidate Model')
rects2 = ax.bar(x + width/2, blessed_scores, width, label='Blessed Model')ax.set_ylabel('Scores')
ax.set_title('Scores by model and metric')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax. Legend()plt.show()

  
该代码将执行以下操作:

  •    为二元分类任务生成合成数据集。
  •    将数据集分为训练集和测试集。
  •    训练两个不同的模型:逻辑回归作为候选模型,随机森林作为祝福模型。
  •    使用准确度、精确度和召回率在测试集上评估这些模型。
  •    绘制结果以进行直观比较。
    在这里插入图片描述

   此示例是一个基本说明。在现实场景中,选择幸运模型的过程将涉及更复杂的数据、更全面的模型评估(包括交叉验证),并考虑模型可解释性、计算效率和现实世界适用性等其他因素。

四、结论

   机器学习模型的动态生命周期 总之,候选模型和幸运模型的概念不仅仅代表机器学习模型生命周期的阶段。它们体现了该领域的动态本质——创新、测试、验证和部署的持续循环。对于参与机器学习技术开发和应用的任何人来说,理解并有效管理这个周期都至关重要。这是一个确保在不断变化的技术环境中不断改进和适应的过程,今天的幸运模型是明天的改进候选者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/643759.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3 中组合键 command+Enter / shift+Enter / alt + Enter 实现换行,详细实现

vue3 中组合键实现换行 需求背景 有一个聊天室功能,采用输入框的形式,输入完毕使用Enter,可以直接进行发送。使用一些组合键 比如 commandEnter / shiftEnter / alt Enter … 可以实现换行操作。但现实的情况是,原生 Enter 天然…

C++ 之LeetCode刷题记录(十六)

😄😊😆😃😄😊😆😃 开始cpp刷题之旅。 依旧是追求耗时0s的一天。 100. 相同的树 给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。 如果两个树在…

MySQL InnoDB 底层数据存储

InnoDB 页记录Page Directory记录迁移 页 是内存与磁盘交互的基本单位,16kb。 比如,查询的时候,并不是只从磁盘读取某条记录,而是记录所在的页 记录 记录的物理插入是随机的,就是在磁盘上的位置是无序的。但是在页中…

K8S的图形化工具——rancher

rancher是一个开源的企业级多集群的K8S管理平台 hub.docker.com rancher和K8S区别: 都是为了容器的调度和编排系统,但是rancher不仅能够调度,还能管理K8S集群,自带监控(普罗米修斯) 即使不知道K8S是什么…

Vue-35、Vue中使用ref属性

1、ref属性 2、代码 <template><div id"app"> <!-- <img alt"Vue logo" src"./assets/logo.png">--><h1 v-text"msg" ref"title"></h1><button click"showDOM" ref&…

Dify学习笔记-基础介绍(一)

1、简介 Dify AI是一款强大的LLMOps&#xff08;Language Model Operations&#xff09;平台&#xff0c;专为用户提供便捷的人工智能应用程序开发体验。 该平台支持GPT系列模型和其他模型&#xff0c;适用于各种团队&#xff0c;无论是用于内部还是外部的AI应用程序开发。 它…

RKE快速搭建离线k8s集群并用rancher管理界面

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 本文记录使用RKE快速搭建一套k8s集群过程&#xff0c;使用的rancher老版本2.5.7&#xff08;当前最新版为2.7&#xff09;。适用…

5分钟做自己的微信红包封面

文章目录 怎么制作自己的红包封面&#xff1f;开通红包封面的要求如下&#xff1a;收费情况制作具体网站&#xff1a;https://chatapi.onechat.fun/register?affYoU6 提交审核logo封面、挂件、气泡证明材料 发放红包封面其他 怎么制作自己的红包封面&#xff1f; 开通红包封面…

【第十五课】数据结构:堆 (“堆”的介绍+主要操作 / acwing-838堆排序 / 时间复杂度的分析 / c++代码 )

目录 关于堆的一些知识的回顾 数据结构&#xff1a;堆的特点 "down" 和 "up"&#xff1a;维护堆的性质 down up 数据结构&#xff1a;堆的主要操作 acwing-838堆排序 代码如下 时间复杂度分析 确实是在写的过程中频繁回顾了很多关于树的知识&…

【开源】基于JAVA+Vue+SpringBoot的教学过程管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 教师端2.2 学生端2.3 微信小程序端2.3.1 教师功能如下2.3.2 学生功能如下 三、系统展示 四、核心代码4.1 查询签到4.2 签到4.3 查询任务4.4 查询课程4.5 生成课程成绩 六、免责说明 一、摘要 1.1 项目介绍 基于JAVAVu…

一文读懂量化交易中的算法交易使用!

高频交易策略利用计算机&#xff0c;在人类交易者能够处理他们观察到的信息之前&#xff0c;根据以电子方式接收到的信息做出精心的决定来启动订单。 为通过挂单被动成交来追求更好的交易均价&#xff0c;随着人工智能&#xff0c;机器学习等技术的引入&#xff0c;逐渐演变为…

flink-java使用介绍,flink,java,DataStream API,DataSet API,ETL,设置 jobname

1、环境准备 文档&#xff1a;https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/ 仓库&#xff1a;https://github.com/apache/flink 下载&#xff1a;https://flink.apache.org/zh/downloads/ 下载指定版本&#xff1a;https://archive.apache.org/dist/flink…

Git的管理操作

目录 前言 认识工作区、暂存区、版本库 小结&#xff1a; 使用场景--1&#xff1a; git log&#xff1a; 查看.git文件&#xff1a; 使用场景--2&#xff1a; git status&#xff1a; git diff&#xff1a; 进行提交&#xff1a; 总结&#xff1a; 版本回退 退…

Python函数调用的9大方法详解

概要 在Python中&#xff0c;函数是一种非常重要的编程概念&#xff0c;它们使得代码模块化、可重用&#xff0c;并且能够提高代码的可读性。本文将深入探讨Python函数调用的9种方法&#xff0c;包括普通函数、匿名函数、递归函数、高阶函数等&#xff0c;以及它们的应用示例。…

python内置函数有哪些?整理到了7大分类48个函数,都是工作中常用的函数

python内置函数 一、入门函数 1.input() 功能&#xff1a; 接受标准输入&#xff0c;返回字符串类型 语法格式&#xff1a; input([提示信息])实例&#xff1a; # input 函数介绍text input("请输入信息:") print("收到的数据是:%s" % (text))#输出…

k8s---pod的水平自动伸缩HPA

HPA&#xff1a;Horizontal Pod Autoscaling是pod的水平自动伸缩。是k8s自带的模块 pod占用CPU的比率到达一定的阈值会触发伸缩机制。 replication controller&#xff1a;副本控制器。控制pod的副本数 deployment controller&#xff1a;节点控制器。部署pod hpa控制副本的…

怎么他们都有开源项目经历|手把手教你参与开源

一、前言 大家好&#xff0c;这里是白泽。有一些同学提问&#xff0c;希望在自己的简历上增加一些有含金量的项目经历&#xff0c;最好能够去参与一些开源项目的开发&#xff0c;但由于对一个庞大的开源项目缺乏认知&#xff0c;难以着手。同时也担心自己能力不足&#xff0c;…

亚信安慧AntDB:AntDB-M元数据锁之锁的获取(三)

5 锁的获取 5.1 锁的强弱 当线程已经持有的锁比新申请的锁更强时&#xff0c;认为已经持有了锁&#xff0c;无需再对申请锁类型加锁。锁的强弱指持有的锁与其他锁的不兼容集合大小&#xff0c;集合相同锁相同&#xff0c;集合更大锁更强&#xff0c;否则无强弱关系。通过锁的…

php比较运算,强相等(===)弱相等(==)表

弱相等&#xff08;&#xff09; 符号为&#xff1a; 规则为&#xff1a;只比较值&#xff0c;不比较类型&#xff0c;只要值对就为true 样例&#xff1a;比较整型123和字符串"123"&#xff0c;运行结果给出了true 弱相等表&#xff1a;* 代表在 PHP 8.0.0 之前为…

leetcode 刷题2

二分查找的绝妙运用&#xff1a; 看到有序数列&#xff0c;算法复杂度 0033. 搜索旋转排序数组 class Solution { public:int search(vector<int>& nums, int target) {int left 0;int right nums.size() - 1;while (left < right) {int mid left (right - …