【第十五课】数据结构:堆 (“堆”的介绍+主要操作 / acwing-838堆排序 / 时间复杂度的分析 / c++代码 )

目录

关于堆的一些知识的回顾 

数据结构:堆的特点

"down" 和 "up":维护堆的性质

down

up

数据结构:堆的主要操作

acwing-838堆排序

代码如下

时间复杂度分析


确实是在写的过程中频繁回顾了很多关于树的知识,有关的文章都在专栏里,需要的可以去回顾一下~

http://t.csdnimg.cn/0d6Iqicon-default.png?t=N7T8http://t.csdnimg.cn/0d6Iq

关于堆的一些知识的回顾 

关于堆,我的印象中是内存机制里的堆。之前写过的,在回顾一下吧~

然而我们这里说的堆,其实是一种数据结构中的完全二叉树实现的堆

(我们这里图片上写的坐标索引方式是根节点从0开始索引,我们下面会采用下标从1开始索引,那样的话,左儿子就应该是2x 右儿子是2x+1 可以理解哈)

其实这里还要回顾一下树的广度优先遍历,即一层一层,从左到右的遍历方式,对于完全二叉树来说,其广度优先遍历就是创建一个数组,按照特定的存储方式进行存储,最终直接输出数组元素。对于其他的树,采取队列的存储方式。下面这篇文章详细介绍了树的遍历,也对数组存储有更深的解释,感兴趣可以看一下

http://t.csdnimg.cn/NngZ6


数据结构:堆的特点

1.完全二叉树的结构 

堆是一个完全二叉树,这意味着除了最底层,其他层都是满的,而最底层的节点都集中在左侧。

到这里就要疑惑为什么堆是完全二叉树这种结构了 

http://www.zhihu.com/question/36134980/answer/87490177

这篇文章作者详细解释了关于"堆"这种数据结构好处包括用途,我感觉写的非常不错,可以看一下加深理解。

其中主要提到:1.完全二叉树这种结构可以使用数组实现存储,并且便于索引

2.它的出现是为了解决----对一个动态的序列进行排序,并且随时想知道这个序列的最小值或最大值

2.最小堆和最大堆

堆可以分为最小堆和最大堆两种类型。在最小堆中,每个节点的值都小于或等于其子节点的值。而在最大堆中,每个节点的值都大于或等于其子节点的值。(也叫小根堆和大根堆)

"down" 和 "up":维护堆的性质

"down" 操作通常涉及到将元素向下移动,适用于删除操作和堆化过程中。

通过 down(k) 进行下沉操作是为了调整以 k 为根的子树,确保其满足最小堆的性质。这主要关注了 k 节点向下的关系

"up" 操作涉及到将元素向上移动,适用于插入操作和堆化过程中。 

通过 up(k) 进行上浮操作是为了确保从删除元素的位置 k 开始,向上到根节点的路径上的每个父节点都满足最小堆的性质。这主要关注了 k 节点向上的关系

而我们所说的 "down" 和 "up" 是通常用于--维护堆的性质。以确保堆的性质不被破坏。

下面以小根堆为例 

down

根据这个思路我们写出代码

//调整以x为根的子树,以满足小根堆的性质(x是经过某种操作得到的值,在操作之前整棵树是满足堆的性质的)
void down(int x)
{int t=x;//t表示三个数中的最小值
//比较的前提都是孩子存在if(x*2<=size && he[x*2]<he[t])t=x*2;if(x*2+1<=size && he[x*2+1]<he[t])t=x*2+1;if(x!=t)//所以这里如果不需要交换位置,那说明更改的这个值并没有破坏原有的性质{swap(he[x],he[t]);down(t);//需要交换 说明我们又更改了一个位置的值,所以要继续判断这次更改的是否符合性质}
}

down操作的前提就是 本身这个树的每个节点都是符合性质的,只是某一个值发生了改变

我们针对这个发生改变的值,不管它是插入还是修改还是更改而导致的值的变化,我们最主要的就是关注改值之后,以其为根节点的子树。

将该值与它的原本的左右两个孩子的值的比较,如果不需要交换位置,说明这次的更改的值并没有引起堆的性质的变化

up

如上图这种完全二叉树,按照数组存储方式,观察其下标表示,我们发现孩子节点是其父节点下标的二倍

由于小根堆的性质,根节点小于左右孩子,所以我们检查的时候只看该节点与根节点的大小关系就好了,因为另一个孩子一定是大于根节点且符合性质的

void up(int x)
{while(x/2 && he[x/2]>he[x])//当该元素存在父节点且满足大小关系{swap(he[x/2],he[x]);x /= 2;//更新父节点}
}

有了上面down的详细解释这个应该很容易理解了。 

数据结构:堆的主要操作

1.插入一个元素,并仍保持堆的性质

2.删除最小/大值。

3.堆化:将一个无序数组转换为堆,或者修复一个破坏了堆性质的堆。

这里先详细说一下堆化

for(int i=n/2;i;i--)down(i);

我们通常从倒数第二层(n/2是最后一个元素的父节点)开始进行逐个元素下沉,最终达到将数组堆化的结果。 这是因为底层节点是叶子节点,它们自身已经满足堆的性质,不需要进行下沉操作。


关于手写堆的一些主要操作就是上面这些。

下面我逐个来解释。

1.插入一个数。由于我们堆结构是用数组实现存储的完全二叉树,因此对于数组来说,在末尾添加一个元素是很容易的,所以我们先把这个要插入的元素放到堆的末尾,在进行up操作,使其符合堆的性质。

2.求最小值,我们小根堆的根节点就是其最小值。

3.删除最小值。由于我们总是要删除一个元素的,在数组存储结构中,删除最后一个元素是很简单的,直接使我们使用到的下标--就行,但是我们要删的是第一个元素呀,怎么办呢?我们把最后一个元素的值标记覆盖到第一个元素的位置,再删除掉最后一个元素,再把刚刚放到第一位的元素进行down操作,使其符合堆的性质。

4.删除任意一个元素。在3思路的基础上,由于我们不清楚最后一个元素相较于原来这个位置上删除掉的元素是大还是小,如果是大于原来的元素,那就会执行down,如果小于,就会向上执行up,因此,这两个只会执行其中一个,为了简化代码,我们直接不判断,把两个都放上去

5.修改任意一个元素,解释同4

acwing-838堆排序

经过上面的介绍其实这道题的核心都已经解了,直接看代码把。

代码如下

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int n,m;
int he[N],size;//调整以 x 为根的子树,以满足小根堆的性质
void down(int x)
{int t=x;//t表示三个数中的最小值if(x*2<=size && he[x*2]<he[t])t=x*2;if(x*2+1<=size && he[x*2+1]<he[t])t=x*2+1;if(x!=t){swap(he[x],he[t]);down(t);}
}
int main()
{scanf("%d%d",&n,&m);for(int i=1;i<=n;i++){scanf("%d",&he[i]);}size=n;//size标记数组最后一个元素for(int i=n/2;i;i--)down(i);//将数组堆化while(m--)//每次输出一个最小值{printf("%d ",he[1]);he[1]=he[size];//删除最小值size--;down(1);}return 0;
}

时间复杂度分析

在这段代码中:

输入数据的for循环O(n) 

建堆的for循环,先看down函数,down是逐层比较,其时间复杂度取决于树的高度,所以最坏情况下就是该二叉树为满二叉树时的树高,即log(n)。那么整个建堆过程时间复杂度应为O(n*log(n))  

关于这种说法其实是错误的,表面上看好像是这样,但是这个观点没有考虑到在建堆过程中,每个节点的调整代价并不都是logn,因为我们这里采用的是自下而上的弗洛伊德建堆方式使用的是down函数,最坏时间复杂度也是O(n)。

关于它是如何得出的?下面这些文章都写得很好很清楚,可以帮助大家理解。

建堆分为从上向下建和从下向上建。

【数据结构】堆的建立 (时间复杂度计算-堆排序)---超细致-阿里云开发者社区 (aliyun.com)

这篇文章前半部分通过图示和公式计算详细的解释了这两种建堆方式的时间复杂度,写得很

好,容易理解。大家可以看他写的。 

堆排序中建堆过程时间复杂度O(n)怎么来的?

在堆排序中,无论是使用大根堆还是小根堆,其实都可以达到排序的目的,只是排序的顺序不同。到升序序列倾向建立大根堆,想得到降序序列倾向建立小根堆

输出最小值的while循环,也是取决于down函数执行次数,即O(m*log(n)) 

在小根堆中,只有根节点是最小的,但是其下的两个节点之间大小关系不一定是升序。当我们需要获取前m小的数时,我们需要做的是利用while循环反复取出根节点(也就是当前堆中的最小值),然后进行堆调整,以保证剩下的部分仍然满足小根堆的性质。

所以总的时间复杂度,最坏情况下应该是O(n+n+n*logn)=O(n*logn),第一个n代表读入数据,第二个n代表弗洛伊德方式建堆,第三个n*logn代表每次移除根节点之后的堆调整


哎,就差一个模拟堆(烦躁),是有点强迫症在的😢明天在写啦。。

有问题欢迎指出!一起加油!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/643745.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【开源】基于JAVA+Vue+SpringBoot的教学过程管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 教师端2.2 学生端2.3 微信小程序端2.3.1 教师功能如下2.3.2 学生功能如下 三、系统展示 四、核心代码4.1 查询签到4.2 签到4.3 查询任务4.4 查询课程4.5 生成课程成绩 六、免责说明 一、摘要 1.1 项目介绍 基于JAVAVu…

一文读懂量化交易中的算法交易使用!

高频交易策略利用计算机&#xff0c;在人类交易者能够处理他们观察到的信息之前&#xff0c;根据以电子方式接收到的信息做出精心的决定来启动订单。 为通过挂单被动成交来追求更好的交易均价&#xff0c;随着人工智能&#xff0c;机器学习等技术的引入&#xff0c;逐渐演变为…

flink-java使用介绍,flink,java,DataStream API,DataSet API,ETL,设置 jobname

1、环境准备 文档&#xff1a;https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/ 仓库&#xff1a;https://github.com/apache/flink 下载&#xff1a;https://flink.apache.org/zh/downloads/ 下载指定版本&#xff1a;https://archive.apache.org/dist/flink…

Git的管理操作

目录 前言 认识工作区、暂存区、版本库 小结&#xff1a; 使用场景--1&#xff1a; git log&#xff1a; 查看.git文件&#xff1a; 使用场景--2&#xff1a; git status&#xff1a; git diff&#xff1a; 进行提交&#xff1a; 总结&#xff1a; 版本回退 退…

Python函数调用的9大方法详解

概要 在Python中&#xff0c;函数是一种非常重要的编程概念&#xff0c;它们使得代码模块化、可重用&#xff0c;并且能够提高代码的可读性。本文将深入探讨Python函数调用的9种方法&#xff0c;包括普通函数、匿名函数、递归函数、高阶函数等&#xff0c;以及它们的应用示例。…

python内置函数有哪些?整理到了7大分类48个函数,都是工作中常用的函数

python内置函数 一、入门函数 1.input() 功能&#xff1a; 接受标准输入&#xff0c;返回字符串类型 语法格式&#xff1a; input([提示信息])实例&#xff1a; # input 函数介绍text input("请输入信息:") print("收到的数据是:%s" % (text))#输出…

k8s---pod的水平自动伸缩HPA

HPA&#xff1a;Horizontal Pod Autoscaling是pod的水平自动伸缩。是k8s自带的模块 pod占用CPU的比率到达一定的阈值会触发伸缩机制。 replication controller&#xff1a;副本控制器。控制pod的副本数 deployment controller&#xff1a;节点控制器。部署pod hpa控制副本的…

怎么他们都有开源项目经历|手把手教你参与开源

一、前言 大家好&#xff0c;这里是白泽。有一些同学提问&#xff0c;希望在自己的简历上增加一些有含金量的项目经历&#xff0c;最好能够去参与一些开源项目的开发&#xff0c;但由于对一个庞大的开源项目缺乏认知&#xff0c;难以着手。同时也担心自己能力不足&#xff0c;…

亚信安慧AntDB:AntDB-M元数据锁之锁的获取(三)

5 锁的获取 5.1 锁的强弱 当线程已经持有的锁比新申请的锁更强时&#xff0c;认为已经持有了锁&#xff0c;无需再对申请锁类型加锁。锁的强弱指持有的锁与其他锁的不兼容集合大小&#xff0c;集合相同锁相同&#xff0c;集合更大锁更强&#xff0c;否则无强弱关系。通过锁的…

php比较运算,强相等(===)弱相等(==)表

弱相等&#xff08;&#xff09; 符号为&#xff1a; 规则为&#xff1a;只比较值&#xff0c;不比较类型&#xff0c;只要值对就为true 样例&#xff1a;比较整型123和字符串"123"&#xff0c;运行结果给出了true 弱相等表&#xff1a;* 代表在 PHP 8.0.0 之前为…

leetcode 刷题2

二分查找的绝妙运用&#xff1a; 看到有序数列&#xff0c;算法复杂度 0033. 搜索旋转排序数组 class Solution { public:int search(vector<int>& nums, int target) {int left 0;int right nums.size() - 1;while (left < right) {int mid left (right - …

SQL提示与索引终章

✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL-进阶篇 &#x1f4dc; 感谢大家的关注&#xff01; ❤️ 可以关注黑马IT&#xff0c;进行学习 目录 &#x1f680;SQL提示 &#x1f680;覆盖索引 &#x1f680;前缀索引 &…

.NET国产化改造探索(六)、银河麒麟操作系统中安装多个.NET版本

随着时代的发展以及近年来信创工作和…废话就不多说了&#xff0c;这个系列就是为.NET遇到国产化需求的一个闭坑系列。接下来&#xff0c;看操作。 上一篇文章介绍了如何在银河麒麟操作系统上&#xff0c;使用Nginx.NET程序实现自启动。本文介绍下如何在一个环境中&#xff0c;…

<蓝桥杯软件赛>零基础备赛20周--第16周--GCD和LCM

报名明年4月蓝桥杯软件赛的同学们&#xff0c;如果你是大一零基础&#xff0c;目前懵懂中&#xff0c;不知该怎么办&#xff0c;可以看看本博客系列&#xff1a;备赛20周合集 20周的完整安排请点击&#xff1a;20周计划 每周发1个博客&#xff0c;共20周。 在QQ群上交流答疑&am…

解决 ssh: connect to host github.com port 22: Connection timed out

问题 今天使用git克隆github上的代码时&#xff0c;一直报错 原以为是公钥过期了&#xff0c;就尝试修改配置公钥&#xff0c;但是尝试了几次都不行&#xff0c;最终在博客上找到了解决方案&#xff0c;在次记录一下&#xff0c;以备不时之需 解决ssh-connect-to-host-github…

前端文件上传(文件上传,分片上传,断点续传)

普通文件上传 思路&#xff1a; 首先获取用户选择的文件对象&#xff0c;并将其添加到一个 FormData 对象中。然后&#xff0c;使用 axios 的 post 方法将 FormData 对象发送到服务器。在 then 和 catch 中&#xff0c;我们分别处理上传成功和失败的情况&#xff0c;并输出相应…

Java零基础学习19:集合

编写博客目的&#xff1a;本系列博客均根据B站黑马程序员系列视频学习和编写目的在于记录自己的学习点滴&#xff0c;方便后续回忆和查找相关知识点&#xff0c;不足之处恳请各位有缘的朋友指正。 一、集合和数组的对比 数组和集合很相似&#xff0c;但集合只能存储引用数据类…

Ask for Power Apps 消失了?

Ask for Power Apps 消失了? 背景替换定义一个接收数组的参数1.我们新建一个Text接收参数取名为**Arrlist**.定义一个参数类型是Array 背景 今天才发现&#xff0c;我在flow中想向power apps索要一个参数&#xff0c;但是之前的Ask for Power Apps 这个触发器怎么也找不到了。…

Aloha原理以及代码分析参考资料链接汇总

平台&#xff1a;CSDN Mobile Aloha 【软硬件原理代码解析】 作者&#xff1a;Yuezero_ Aloha 机械臂的学习记录3——AWE&#xff1a;Pycharm运行代码记录 作者&#xff1a;随机惯性粒子群 【EAI 007】Mobile ALOHA&#xff1a;一个低成本的收集人类示教数据的双臂移动操作硬…

2023 IoTDB Summit:中核武汉核电运行技术股份有限公司主管工程师方华建《IoTDB在核电数字化转型过程的应用实践》...

12 月 3 日&#xff0c;2023 IoTDB 用户大会在北京成功举行&#xff0c;收获强烈反响。本次峰会汇集了超 20 位大咖嘉宾带来工业互联网行业、技术、应用方向的精彩议题&#xff0c;多位学术泰斗、企业代表、开发者&#xff0c;深度分享了工业物联网时序数据库 IoTDB 的技术创新…