力扣精选算法100题——在排序数组中查找元素的第一个和最后一个位置(二分查找专题)

目录

第一步:了解题意 

第二步:算法原理

🚩查找区间左端点值

❗处理细节

循环条件:

求中点

🚩查找区间右端点值

❗处理细节

循环条件

求中点

🚩总结

第三步:代码实现

第四步:总结模板


第一步:了解题意 

  • 本题是返回的是(在数组中与目标值相等的开始位置和结束位置)如果是{1,2,3,3,3,4,5}我们只需返回{2,4}位置即可,只要返回开始位置和结束位置,中间位置不用返回
  • 如果不存在目标值target,那么我们就返回{-1,-1} 

第二步:算法原理

这一题暴力解法确实是很简单的去实现,但是这一题明确说明了需要时间复杂度为logN来实现,这就意味着不能用暴力解法O(N)。

二分查找法的本质:看区间是否有“二段性”。取一个点能分成俩部分,有一部分是满足条件,则可用二分查找算法。它并不是非得分成一半一半,也可以是三分之一,四分之一,只是复杂度的问题。

其实我们可以利用三分四分二分都可以解决问题,但是我们最合理的是二分方法解决问题,因为用到概率学的期望值中,我们确实如果找到目标值可以在1/4中的小部分,但是我们也可能在1/4的另一个大部分,所以期望值来看,平分是最好的。最终选取中间点进行划分,二分查找时间复杂度最小。


本题是找到开始位置和结束位置,我们可以从查找区间的左端点值和区间的右端点值入手。

🚩查找区间左端点值

我们看到这里,我们会不会想到划分区间(二分查找的本质是'能有“二分段”)我们可以划分【小于t】【大于等于t】俩部分。这时候我们就可以二分查找思路来解题。

  • 由于x<t的话肯定在小于t的区间内,那里面的结果是不可能存在等于target的所以我们给left=mid+1
  • 而x>=t的时候,肯定是在大于等于t的区间内,所以里面的结果是可能存在等于target的,如果mid正好对应的是等于最左边的3的时候,我们是不能给right=mid-1的,所以我就给right=mid即可

❗处理细节

循环条件:

存在俩种情况left<=right和left<right。

最终left是肯定会达到区间的左端点的值的,而right=mid一直在靠近最左端值,最终也会到达端点值,所以我们不需要进行left=right再循环,因为那个时候我们已经指向了结果,我们只需要判断一下left对应的值是否等于target即可。

最终选择left<right.

求中点

求中点:

mid=left+(right-left)/2mid=left+(right-left+1)/2

这俩个中点值,一个值的是在偶数的时候取左值还是右值。

而我们在取区间的左端的时候,我们的left=mid+1  right=mid.

如果我们选择mid=(right+left+1)/2+left的情况下,我们在遇到这个情况下,mid在right的位置,然后right依旧mid,我们就陷入了死循环,我们需要mid指向的是偶区间的左边,而不是右边,因为right=mid,会导致死循环。所以遇到查找区间的左端点值我们选择mid=(right-left)/2+left

🚩查找区间右端点值

  • 由于x>t的话肯定在大于t的区间内,那里面的结果是不可能存在等于target的所以我们给right=mid-1
  • 而x<=t的时候,肯定是在小于等于t的区间内,所以里面的结果是可能存在等于target的,如果mid正好对应的是等于最左边的3的时候,我们是不能给left=mid+1的,所以我就给left=mid即可

❗处理细节

循环条件

和上述的查找区间的左端点值一样。

求中点

而我们在取区间的右端点的时候,我们的left=mid  right=mid-1.

如果我们选择mid=(right+left)/2+left的情况下,我们在遇到这个情况下,mid在left的位置,然后left依旧mid,我们就陷入了死循环,我们需要mid指向的是偶区间的右边,而不是左边,因为left=mid,会导致死循环。所以遇到查找区间的右端点值我们选择mid=(right-left+1)/2+left


🚩总结

  • 循环条件:left<right

区间左端点,区间右端点我们都不需要再进行left=right的循环,所以循环条件是left<right

  • 求中点

区间左端点:mid=(right-left)/2+left    因为left=mid+1  right=mid  偶区间的左边

区间右端点:mid=(right-left+1)/2+left  因为left=mid  right=mid-1  偶区间的右边


第三步:代码实现

class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {if(nums.size()==0){return {-1,-1};}int left=0,right=nums.size()-1;//取左端点值int begin=0;while(left<right){int mid=(right-left)/2+left;if(nums[mid]<target)left=mid+1;else right=mid;}//判断是否有结果if(nums[left]!=target)return {-1,-1};else begin=left;//取右端点值left=0,right=nums.size()-1;while(left<right){int mid=(right-left+1)/2+left;if(nums[mid]<=target)left=mid;else right=mid-1;}return {begin,left};}
};

第四步:总结模板

这只是初步的给个模板,后续会有题目来熟练认知这段代码。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/643595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony 鸿蒙使用指南——概述

简介 OpenHarmony采用多内核&#xff08;Linux内核或者LiteOS&#xff09;设计&#xff0c;支持系统在不同资源容量的设备部署。当相同的硬件部署不同内核时&#xff0c;如何能够让设备驱动程序在不同内核间平滑迁移&#xff0c;消除驱动代码移植适配和维护的负担&#xff0c;…

npm官方注册表和淘宝镜像切换

1.切换到淘宝镜像 加快npm包的下载速度&#xff0c; //已失效 //npm config set registry https://registry.npm.taobao.org/ npm config set registry https://registry.npmmirror.com这会将npm的注册表设置为淘宝镜像 查看&#xff1a; npm config get registry如果返回的…

技术驱动宠物健康:宠物在线问诊系统的高效搭建手册

在数字化时代&#xff0c;技术正在催生出许多创新的医疗服务&#xff0c;而宠物在线问诊系统便是其中一项引领潮流的创举。本文将为你提供一份高效搭建宠物在线问诊系统的手册&#xff0c;通过技术代码示例&#xff0c;让你轻松打造一套技术驱动的宠物健康管理系统。 1. 架构…

常用芯片学习——HC244芯片

HC573 三态输出八路缓冲器|线路驱动器 使用说明 SNx4HC244 八路缓冲器和线路驱动器专门设计用于提高三态存储器地址驱动器、时钟驱动器以及总线导向接收器和发送器的性能和密度。SNx4HC244 器件配备两个具有独立输出使能 (OE) 输入的 4 位缓冲器和驱动器。当 OE 为低电平时&a…

数据库:逻辑删除|物理删除及适用性

物理删除和逻辑删除是两种不同的记录删除操作方式&#xff0c;它们各自具有一些优劣势&#xff0c;并适用于不同的场景。 物理删除 物理删除的优势&#xff1a; 节省存储空间&#xff1a;物理删除会直接从数据库中删除记录&#xff0c;可以实现即时的存储空间释放&#xff0c…

【java问题解决】-word转pdf踩坑

问题情境&#xff1a; 项目中采用word转pdf&#xff0c;最开始使用的pdf相关的apache的pdfbox和itextpdf&#xff0c;后面发现对于有图片背景的word转pdf的情景&#xff0c;word中的背景图会直接占用位置&#xff0c;导致正文不会正确落在背景图上。 解决方案&#xff1a; 采…

【数据结构】 顺序栈的基本操作 (C语言版)

目录 一、顺序栈 1、顺序栈的定义&#xff1a; 2、顺序栈的优缺点 二、顺序栈的基本操作算法&#xff08;C语言&#xff09; 1、宏定义 2、创建结构体 3、顺序栈的初始化 4、顺序栈的入栈 5、顺序栈的出栈 6、取栈顶元素 7、栈的遍历输出 8、顺序栈的判空 9、顺…

《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(19)-Fiddler精选插件扩展安装,将你的Fiddler武装到牙齿

1.简介 Fiddler本身的功能其实也已经很强大了&#xff0c;但是Fiddler官方还有很多其他扩展插件功能&#xff0c;可以更好地辅助Fiddler去帮助用户去开发、测试和管理项目上的任务。Fiddler已有的功能已经够我们日常工作中使用了&#xff0c;为了更好的扩展Fiddler&#xff0c…

Vue3 Suspense

✨ 专栏介绍 在当今Web开发领域中&#xff0c;构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架&#xff0c;正是为了满足这些需求而诞生。它采用了MVVM架构模式&#xff0c;并通过数据驱动和组件化的方式&#xff0c;使…

windows cmd命令行隐藏窗口后台启动运行程序,开机自启

隐藏窗口后台启动运行 我的目录结构 start.bat echo off if "%1" "h" goto begin mshta vbscript:createobject("wscript.shell").run("%~nx0 h",0)(window.close)&&exit :begin :: cd %~dp0 call shutdown.bat jre…

一文读懂:D3.js的前世今生,以及与echarts的对比

D3.js&#xff08;Data-Driven Documents&#xff09;是一种用于创建动态、交互式数据可视化的JavaScript库。它通过使用HTML、CSS和SVG等Web标准&#xff0c;将数据与文档结合&#xff0c;使得数据可以以一种直观和易于理解的方式进行呈现。D3.js的重要性在于它赋予了开发者更…

【GitHub项目推荐--不错的Rust开源项目】【转载】

01 Rust 即时模式 GUI 库 egui 是一个简单、快速且高度可移植的 Rust 即时模式 GUI 库&#xff0c;可以轻松地将其集成到你选择的游戏引擎中&#xff0c;旨在成为最易于使用的 Rust GUI 库&#xff0c;以及在 Rust 中制作 Web 应用程序的最简单方法。 项目地址&#xff1a;ht…

【面试突击】微信亿级朋友圈的社交系统设计

微信亿级朋友圈的社交系统设计 先来说一下业务需求吧&#xff1a; 每个用户可以发朋友圈&#xff0c;可以点赞&#xff0c;评论可以设置权限&#xff0c;不看某些人朋友圈、不让某些人看你的朋友圈可以刷朋友圈中其他人的动态 对于这样的系统设计&#xff0c;主要从业务来考虑…

gin中使用validator做参数校验

在web开发中对请求参数进行校验&#xff0c;通常在代码中定义与请求参数相对应的模型&#xff08;结构体&#xff09;&#xff0c;借助模型绑定快捷地解析请求中的参数&#xff0c;例如 gin 框架中的Bind和ShouldBind系列方法。 gin框架使用github.com/go-playground/validato…

uniapp css样式穿透

目录 前言css样式穿透方法不加css样式穿透的代码加css样式穿透的代码不加css样式穿透的代码 与 加css样式穿透的代码 的差别参考 前言 略 css样式穿透方法 使用 /deep/ 进行css样式穿透 不加css样式穿透的代码 <style>div {background-color: #ddd;} </style>…

用这个技术管理备用电源!同事下巴都惊掉了!

在当今社会&#xff0c;电力供应的可靠性对各个行业的正常运行至关重要。而蓄电池作为备用电源的重要组成部分&#xff0c;其性能和状态的稳定管理成为保障电力系统稳定性的关键环节。 因此&#xff0c;为了有效监测和管理蓄电池&#xff0c;蓄电池监控系统应运而生。 客户案例…

智能机器人与旋量代数(12)

Chapt 4. 旋量代数在机器人学中的应用 4.1 串联机器人正运动学的指数积(PoE, Product of Exponetial)公式 4.1.1 回顾&#xff1a;机器人正运动学的Denavit-Hartenberg (D-H)参数公式 D-H 建模法: D-H 建模方法是由 Denavit 和 Hartenberg (ASME, 1955) 提出的一种建模方法&…

如何高效挖掘Web漏洞?

简介 SRC漏洞平台&#xff1a;安全应急响应中心&#xff08;SRC, Security Response Center&#xff09;&#xff0c;是企业用于对外接收来自用户发现并报告的产品安全漏洞的站点。说白了&#xff0c;就是连接白帽子和企业的平台&#xff0c;你去合法提交漏洞给他们&#xff0…

C#中的委托概念以及例子

在C#中&#xff0c;什么是委托&#xff08;Delegate&#xff09;&#xff1f;请简要说明委托的概念&#xff0c;并提供一个简单的示例说明如何使用委托。 答案&#xff1a; 委托的概念&#xff1a; 委托是一种类型&#xff0c;它允许将方法作为参数传递&#xff0c;使得可以…

Leetcode—24. 两两交换链表中的节点【中等】

2023每日刷题&#xff08;八十七&#xff09; Leetcode—24. 两两交换链表中的节点 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x),…