491.递增子序列
代码随想录
视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili
class Solution {List<List<Integer>> ans = new ArrayList<>();List<Integer> list = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return ans;}public void backTracking(int[] nums, int startIndex) {if (list.size() > 1) {ans.add(new ArrayList<>(list));}HashSet<Integer> set = new HashSet<>();for (int i = startIndex; i < nums.length; i++) {if (!list.isEmpty() && list.get(list.size() - 1) > nums[i] || set.contains(nums[i])) continue;set.add(nums[i]);list.add(nums[i]);backTracking(nums, i + 1);list.removeLast();}}
}
46.全排列
代码随想录
视频讲解:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili
class Solution {List<List<Integer>> ans = new ArrayList<>();List<Integer> list = new ArrayList<>();HashSet<Integer> set = new HashSet<>();public List<List<Integer>> permute(int[] nums) {backTracking(nums);return ans;}public void backTracking(int[] nums) {if (list.size() == nums.length) {ans.add(new ArrayList<>(list));return;}for (int i = 0; i < nums.length; i++) {if (set.contains(nums[i])) continue;set.add(nums[i]);list.add(nums[i]);backTracking(nums);list.removeLast();set.remove(nums[i]);}}
}
47.全排列 II
代码随想录
视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili
class Solution {List<List<Integer>> ans = new ArrayList<>();List<Integer> list = new ArrayList<>();boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {if (nums == null || nums.length == 0) return new ArrayList<>();used = new boolean[nums.length];Arrays.sort(nums);backTracking(nums);return ans;}public void backTracking(int[] nums) {if (list.size() == nums.length) {ans.add(new ArrayList<>(list));return;}for (int i = 0; i < nums.length; i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) continue;if (used[i]) continue;used[i] = true;list.add(nums[i]);backTracking(nums);list.removeLast();used[i] = false;}}
}
难点:
used[i - 1] == false
:这是最关键的部分。如果当前元素与前一个元素相同,并且前一个元素尚未被使用(即 used[i - 1] == false
),这意味着我们正处于尝试将当前元素(nums[i]
)放在前一个相同元素(nums[i - 1]
)之前的情况。为了避免重复的排列,我们需要跳过这种情况。
如果 used[i - 1] == true
,表示前一个相同的元素已经被使用在当前的排列中了,我们可以继续使用当前的元素,因为它会产生不同的排列。