【MATLAB第59期】基于MATLAB的混沌退火粒子群CSAPSO-BP、SAPSO-BP、PSO-BP优化BP神经网络非线性函数拟合预测/回归预测对比

【MATLAB第59期】基于MATLAB的混沌退火粒子群CSAPSO-BP、SAPSO-BP、PSO-BP优化BP神经网络非线性函数拟合预测/回归预测对比

注意事项

不同版本matlab 不同电脑 加上数据集随机,BP权值阈值随机,进化算法种群随机,所以运行结果不一定和我运行的一致 。其次, 也会存在CSAPSO 比SAPSO / PSO差的情况。

一、效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、代码展示

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%%  划分训练集和测试集
%temp =1:size(res,1);
temp =randperm(size(res,1));
save temp temp
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
MM = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
NN = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%节点个数
inputnum=size(p_train,1);       % 输入层神经元个数 
outputnum=size(t_train,1);     % 输出层神经元个数
hiddennum=10;
% 创建网络;
net1 = newff(p_train,t_train,hiddennum);
net2 = newff(p_train,t_train,hiddennum);
net3 = newff(p_train,t_train,hiddennum);
%节点总数 2*5 + 5 + 5 + 1 = 21 
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;%% 粒子群算法求权值和阈值
%粒子群算法参数设置
N = 20;
c1 = 2;
c2 = 2;
w = 0.6;
M = 100;
D = numsum;
x = zeros(1,D);%% 把最优初始阀值权值赋予网络预测
% 用粒子群算法优化的BP网络进行值预测
w1_1=xm1(1:inputnum*hiddennum);
B1_1=xm1(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2_1=xm1(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2_1=xm1(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net1.iw{1,1}=reshape(w1_1,hiddennum,inputnum);
net1.lw{2,1}=reshape(w2_1,outputnum,hiddennum);
net1.b{1}=reshape(B1_1,hiddennum,1);
net1.b{2}=reshape(B2_1,outputnum,1);% % 用模拟退火粒子群算法优化的BP网络进行值预测
w1_2=xm2(1:inputnum*hiddennum);
B1_2=xm2(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2_2=xm2(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2_2=xm2(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net2.iw{1,1}=reshape(w1_2,hiddennum,inputnum);
net2.lw{2,1}=reshape(w2_2,outputnum,hiddennum);
net2.b{1}=reshape(B1_2,hiddennum,1);
net2.b{2}=reshape(B2_2,outputnum,1);% 用混沌模拟退火粒子群算法优化的BP网络进行值预测
w1_3=xm3(1:inputnum*hiddennum);
B1_3=xm3(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2_3=xm3(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2_3=xm3(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net3.iw{1,1}=reshape(w1_3,hiddennum,inputnum);
net3.lw{2,1}=reshape(w2_3,outputnum,hiddennum);
net3.b{1}=reshape(B1_3,hiddennum,1);
net3.b{2}=reshape(B2_3,outputnum,1);%% BP网络训练
%粒子群网络进化参数
net1.trainParam.epochs=100;
net1.trainParam.lr = 0.1;
net1.trainParam.goal=1e-3; % 训练目标误差
% 
%模拟退火粒子群网络进化参数
net2.trainParam.epochs=100;
net2.trainParam.lr=0.1;
net2.trainParam.goal=1e-6;%混沌模拟退火粒子群网络进化参数
net3.trainParam.epochs=100;
net3.trainParam.lr=0.1;
net3.trainParam.goal=1e-3;% 训练网络
net1 = train(net1,p_train,t_train); % 粒子群
net2 = train(net2,p_train,t_train); % 模拟退火粒子群
net3 = train(net3,p_train,t_train); % 混沌模拟退火粒子群%% 仿真测试
%% 训练集
test_sim11 = sim(net1,p_train); % 粒子群
test_sim22 = sim(net2,p_train); % 模拟退火粒子群
test_sim33 = sim(net3,p_train); % 混沌模拟退火粒子群% 输出数据反归一化,Test_sim为测试数据通过神经网络的预测输出值
Test_sim11 = mapminmax('reverse',test_sim11,ps_output); % 粒子群
Test_sim22 = mapminmax('reverse',test_sim22,ps_output); % 模拟退火粒子群
Test_sim33 = mapminmax('reverse',test_sim33,ps_output); % 混沌模拟退火粒子群
%% 测试集
test_sim1 = sim(net1,p_test); % 粒子群
test_sim2 = sim(net2,p_test); % 模拟退火粒子群
test_sim3 = sim(net3,p_test); % 混沌模拟退火粒子群% 输出数据反归一化,Test_sim为测试数据通过神经网络的预测输出值
Test_sim1 = mapminmax('reverse',test_sim1,ps_output); % 粒子群
Test_sim2 = mapminmax('reverse',test_sim2,ps_output); % 模拟退火粒子群
Test_sim3 = mapminmax('reverse',test_sim3,ps_output); % 混沌模拟退火粒子群%% 算法结果分析 
%%  均方根误差
%MM=size(T_train,2);
%NN=size(T_test,2);
error11 = sqrt(sum((Test_sim11 - T_train).^2) ./ MM);
error22 = sqrt(sum((Test_sim22 - T_train).^2) ./ MM);
error33 = sqrt(sum((Test_sim33 - T_train).^2) ./ MM);
error1 = sqrt(sum((Test_sim1 - T_test ).^2) ./ NN);
error2 = sqrt(sum((Test_sim2 - T_test ).^2) ./ NN);
error3 = sqrt(sum((Test_sim3 - T_test ).^2) ./ NN);
%%  查看网络结构
%analyzeNetwork(net)%%  相关指标计算
%  R2
disp(['PSO-BP训练集数据的RMSE为:', num2str(error11)])
disp(['SAPSO-BP训练集数据的RMSE为:', num2str(error22)])
disp(['CSAPSO-BP训练集数据的RMSE为:', num2str(error33)])
disp(['PSO-BP测试集数据的RMSE为:', num2str(error1)])
disp(['SAPSO-BP测试集数据的RMSE为:', num2str(error2)])
disp(['CSAPSO-BP测试集数据的RMSE为:', num2str(error3)])R11 = 1 - norm(T_train - Test_sim11)^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_train - Test_sim22)^2 / norm(T_train - mean(T_train))^2;
R33 = 1 - norm(T_train - Test_sim33)^2 / norm(T_train - mean(T_train))^2;
R1 = 1 - norm(T_test  - Test_sim1)^2 / norm(T_test  - mean(T_test ))^2;
R2 = 1 - norm(T_test  - Test_sim2)^2 / norm(T_test  - mean(T_test ))^2;
R3 = 1 - norm(T_test  - Test_sim3)^2 / norm(T_test  - mean(T_test ))^2;
disp(['PSO-BP训练集数据的R2为:', num2str(R11)])
disp(['SAPSO-BP训练集数据的R2为:', num2str(R22)])
disp(['CSAPSO-BP训练集数据的R2为:', num2str(R33)])
disp(['PSO-BP测试集数据的R2为:', num2str(R1)])
disp(['SAPSO-BP测试集数据的R2为:', num2str(R2)])
disp(['CSAPSO-BP测试集数据的R2为:', num2str(R3)])%  MAE
mae11 = sum(abs(Test_sim11 - T_train)) ./ MM ;
mae22 = sum(abs(Test_sim22 - T_train)) ./ MM ;
mae33 = sum(abs(Test_sim33 - T_train)) ./ MM ;
mae1 = sum(abs(Test_sim1 - T_test )) ./ NN ;
mae2 = sum(abs(Test_sim2 - T_test )) ./ NN ;
mae3 = sum(abs(Test_sim3 - T_test )) ./ NN ;disp(['PSO-BP训练集数据的MAE为:', num2str(mae11)])
disp(['SAPSO-BP训练集数据的MAE为:', num2str(mae22)])
disp(['CSAPSO-BP训练集数据的MAE为:', num2str(mae33)])
disp(['PSO-BP测试集数据的MAE为:', num2str(mae1)])
disp(['SAPSO-BP测试集数据的MAE为:', num2str(mae2)])
disp(['CSAPSO-BP测试集数据的MAE为:', num2str(mae3)])%  MAPE   mape = mean(abs((YReal - YPred)./YReal));mape11 = mean(abs((T_train - Test_sim11)./T_train));  
mape22 = mean(abs((T_train - Test_sim22)./T_train)); 
mape33 = mean(abs((T_train - Test_sim33)./T_train)); 
mape1 = mean(abs((T_test - Test_sim1 )./T_test));      
mape2 = mean(abs((T_test - Test_sim2 )./T_test)); 
mape3 = mean(abs((T_test - Test_sim3)./T_test)); disp(['PSO-BP训练集数据的MAPE为:', num2str(mape11)])
disp(['SAPSO-BP训练集数据的MAPE为:', num2str(mape22)])
disp(['CSAPSO-BP训练集数据的MAPE为:', num2str(mape33)])
disp(['PSO-BP测试集数据的MAPE为:', num2str(mape1)])
disp(['SAPSO-BP测试集数据的MAPE为:', num2str(mape2)])
disp(['CSAPSO-BP测试集数据的MAPE为:', num2str(mape3)])save resultfigure()
t = 1:M;
plot(t,Pbest1,'b',t,Pbest2,'g',t,Pbest3,'r');
title('算法收敛过程');
xlabel('进化代数');
ylabel('最小均方误差值(MSE值)');
legend('基本粒子群算法','模拟退火粒子群算法','混沌模拟退火粒子群算法');%%  绘图
%[0.00,0.45,0.74] //蓝
%[0.85,0.33,0.10] //橙红
%[0.93,0.69,0.13] //橙黄
%[0.72,0.27,1]    //淡紫
%[0.47,0.67,0.19] //淡绿
figure()plot( 1: MM, T_train, 'k-*', 'LineWidth', 1.5)
hold on
plot( 1: MM, Test_sim11, 'Color', [0.93,0.69,0.13],'LineWidth', 1.5)
hold on
plot( 1: MM, Test_sim22, 'Color',[0.85,0.33,0.10], 'LineWidth', 1.5)
hold on
plot( 1: MM, Test_sim33,'Color',[0.00,0.45,0.74], 'LineWidth', 1.5)
legend('真实值', 'PSO-BP预测值', 'SAPSO-BP预测值', 'CSAPSO-BP预测值')
xlabel('训练样本')
ylabel('预测结果')
string = {'训练集预测结果对比'};
title(string)
xlim([1, MM])
gridfigure()
plot( 1: NN, T_test, 'k-*', 'LineWidth', 1.5)
hold on
plot( 1: NN, Test_sim1, 'Color', [0.93,0.69,0.13],'LineWidth', 1.5)
hold on
plot( 1: NN, Test_sim2, 'Color',[0.85,0.33,0.10], 'LineWidth', 1.5)
hold on
plot( 1: NN, Test_sim3,'Color',[0.00,0.45,0.74], 'LineWidth', 1.5)
legend('真实值', 'PSO-BP预测值', 'SAPSO-BP预测值', 'CSAPSO-BP预测值')
xlabel('测试样本')
ylabel('预测结果')
string = {'测试集预测结果对比'};
title(string)
xlim([1, NN])
gridsave result

三、代码获取

获取细则详见主页置顶文章。

私信回复“59期”即可获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/6430.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

集成了32位Cortex®M0内核XMC1302T038X0200AB、XMC1302Q040X0200AB 32MHz 200KB 闪存 工业MCU

XMC1000 32位工业 MCU 将 ARM Cortex™-M0 核心与领先的 65nm 制造工艺相结合,克服了目前 8 位设计的局限。XMC1000系列让目前的 8 位用户有机会享受 32 位的功耗,同时不在价格或易用性上做出妥协。XMC1000 在其细分市场提供最为广泛的闪存产品线&#x…

3分钟,快速上手Postman接口测试

Postman是一个用于调试HTTP请求的工具,它提供了友好的界面帮助分析、构造HTTP请求,并分析响应数据。实际工作中,开发和测试基本上都有使用Postman来进行接口调试工作。有一些其他流程的工具,也是模仿的Postman的风格进行接口测试工…

下载|GitLab 2023 年 DevSecOps 全球调研报告:安全左移深入人心、AI/ML 蔚然成风

目录 谁应该对应用程序安全负主要责任? 安全实践的最大挑战 AI 驱动研发,提升研发效率 各个角色使用的工具数量是多少? 一体化 DevSecOps 平台有哪些优势? 56%、74%、71%、65%、57% 这些数字和 DevSecOps 结合在一起&#xf…

android adb命令获取处于当前屏幕的Activity

android adb命令获取处于当前屏幕的Activity 使用adb命令: adb shell dumpsys activity activities 输出,例如: ACTIVITY MANAGER ACTIVITIES (dumpsys activity activities) Display #0 (activities from top to bottom): * Task{38ef601 #5281 typ…

Java当中的栈

栈的理解 栈(Stack)是一种受限的线性数据结构,所谓受限是指栈只暴露栈顶和栈底的操作,其底层是由数组实现的。栈的特性是先进后出。 常用方法 注意上面的peek()方法和pop()方法的区别! 实例 import java.util.Stack…

grpc中间件之链路追踪(otel+jaeger)

参考文档 https://github.com/grpc-ecosystem/go-grpc-middleware/blob/main/examples/client/main.go https://github.com/grpc-ecosystem/go-grpc-middleware/blob/main/examples/server/main.go https://github.com/open-telemetry/opentelemetry-go/blob/main/example/jaeg…

sql中group by 的使用

1、概述 Group By 从字面意义上理解就是根据By指定的规则对数据进行分组,所谓的分组就是将一个数据集划分为若干个小区域,然后针对若干个小区域进行数据处理 2、原始表 3、简单的Group By 示例1 select 类别,数量 as 数量之和 from A gro…

android studio 离线打包配置push模块

1.依赖引入 SDK\libs aps-release.aar, aps-unipush-release.aar, gtc.aar, gtsdk-3.2.11.0.aar, 从android studio的sdk中找到对应的包放到HBuilder-Integrate-AS\simpleDemo\libs下面 2.打开build.gradle,在defaultConfig添加manifestPlaceholders节点&#xff0c…

【代码随想录 | Leetcode | 第十天】哈希表 | 三数之和 | 四数之和

前言 欢迎来到小K的Leetcode|代码随想录|专题化专栏,今天将为大家带来哈希法~三数之和 | 四数之和的分享✨ 目录 前言15. 三数之和18. 四数之和总结 15. 三数之和 ✨题目链接点这里 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], num…

JVM运行时区域——对象创建内存分配过程

新创建的对象,都存放在伊甸园区域,当垃圾回收时,将伊甸园区域的垃圾数据销毁,然后将存活的对象转移到幸存者0区域,之后创建的新的对象还是存放在伊甸园区域,等到再次垃圾回收后,将伊甸园区域和幸…

HTML5——基础知识及使用

HTML 文件基本结构 <html><head><title>第一个页面</title></head><body>hello world</body> </html> html 标签是整个 html 文件的根标签(最顶层标签).head 标签中写页面的属性.body 标签中写的是页面上显示的内容.title 标…

Ansible自动化运维学习——综合练习

目录 (一)练习一 1.新建一个role——app 2.创建文件 3.删除之前安装的httpd服务和apache用户 4.准备tasks任务 (1)创建组group.yml (2)创建用户user.yml (3)安装程序yum.yml (4)修改模板httpd.conf.j2 (5)编写templ.yml (6)编写start.yml (7)编写copyfile.yml (8…

Python爬虫技术及其原理详解

概要 随着互联网的发展&#xff0c;大量的数据被存储在网络上&#xff0c;而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言&#xff0c;被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理&#xff0c;并提供相关的代码案例。 …

Mac电脑文件夹无权限问题

sudo cp 16.5.zip /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport 走到之前的folder &#xff0c;右键选择get info更改權限, 再應用到所有子文件夹 右下解鎖再加自己Read & Write, -右邊拉下應該可以應用到所有子文件 这样就可以…

ES6——Iterator 和 for...of 循环

Iterator:遍历器 是一接口&#xff0c;为不同的数据结构提供统一的访问机制&#xff0c;只要当前数据结构部署了iterator接口&#xff0c;当前数据结构就可以遍历。 作用&#xff1a;1、为不同的数据结构&#xff0c;提供统一的访问机制 2、使当前数据结构的成员依次被访问 3…

[信号与系统系列] 复指数信号

正弦信号的向量表示 正弦信号由幅值、频率和初相位三个要素确定。由于在线性正弦稳态电路中&#xff0c;各处的电流和电压都是正弦信号&#xff0c;并且它们的角频率与正弦的角频率相同&#xff0c;因此&#xff0c;在进行正弦稳态电路分析时&#xff0c;对于正弦信号的幅值和…

真实节点、虚拟节点与影子节点的区别

真实节点、虚拟节点与影子节点的区别 本文将深入介绍真实节点、虚拟节点与影子节点是如何协同工作共同创建一个高性能的文档对象模型。 DOM&#xff08;Document Object Module文档对象模型&#xff09;正如它所描述的那样。网站的 HTML 树由一个名为document的对象表示。在这…

C语言学习笔记 码云及git使用教程-05

目录 一、码云简介 二、码云注册 1.点击右上角的注册按钮 2.填写相应的注册信息 3.使用账号密码进行登陆 三、创建仓库 1.如图新建 2.定义仓库相应参数 3.初始化readme文件 4.效果 5.开源设置 四、git管理 1.安装git 2.打开桌面上的Git bash 3.进行仓库克隆 4. 在其他盘…

查找和二叉树(基础知识和基本操作)

查找&#xff1a; 1.二分查找&#xff1a;先定一个大范围&#xff0c;想一个数&#xff0c;看是在起始范围到中间范围还是中间范围到结束范围&#xff0c;依次循环直到确定值&#xff08;相当于一直把范围折半&#xff0c;直到找到&#xff09; while(low<high) {int mid(…

基于UDP的可靠传输,文件+目录(C++,Qt)

一、基础知识 UDP&#xff08;UserDatagramProtocol&#xff09;是一个简单的面向消息的传输层协议&#xff0c;尽管UDP提供标头和有效负载的完整性验证&#xff08;通过校验和&#xff09;&#xff0c;但它不保证向上层协议提供消息传递&#xff0c;并且UDP层在发送后不会保留…