​​快速排序(四)——挖坑法,前后指针法与非递归

fe594ea5bf754ddbb223a54d8fb1e7bc.gif

目录

​一.前言

二.挖坑法

三.前后指针法

四.递归优化

五.非递归

六.结语


 

8fb442646f144d8daecdd2b61ec78ecd.png一.前言

本文我们接着上篇文章的重点快排,现在继续讲解对快排优化的挖坑法,前后指针法以及非递归方法,下面是上篇文章快排链接:https://mp.csdn.net/mp_blog/creation/editor/135719674。

码字不易,希望大家多多支持我呀!(三连+关注,你是我滴神!)

二.挖坑法

其实挖坑法很简单,因为它只是在hoare的基础上优化了一部分,就比如不用去纠结为什么key在右边时,右边先走。这里因为坑设定在第一位,所以自然要从右边找数去填坑。

因此这里面的循环逻辑就变得很简单,右找小(填左边坑),自己变成新坑,左找大(填右边坑),自己变新坑,就这样以此类推最后一定会相遇,而这个相遇的位置一般就是我们的居中值(三数取中法),最后把key放入即可。

int PartSort2(int* a, int left, int right)
{int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);//通过三数取中把位于最左边的居中数给keyint key = a[left];//保存key值后,左边形成第一个坑位int hotel = left;//left与right不断相遇while (left < right){//右边先走,找小;找到后把值放到左边坑位中,右边形成新的坑位while (left < right && a[right] >= key){right--;}a[hotel] = a[right];hotel = right;//左边开始走,找大;找到后把值放到右边坑位中,左边形成新的坑位while (left < right && a[left] <= key){left++;}a[hotel] = a[left];hotel = left;}//最后二者相遇,并且其中一个必定是坑位//将key放入坑位中a[hotel] = key;return hotel;}

挖坑法由于有了前面hoare的铺垫,所以我们可以更简洁明了地写出代码,也更通俗易懂,但这些前提都是要理解hoare的核心,这样才能写出优化的挖坑法。

三.前后指针法

前后指针法写起来甚至比挖坑法更简单,因为它就只有一个核心点:

cur找比key小的数,prev++,交换prev与cur的值

而prev只有两者情况:

  1. 在cur没遇到比key大的值的时候,prev紧紧跟着cur(重合)
  2. 在cur遇到比key大的值的时候,prev在比key大的一组值的前面

这样就会出现一种情况,比key大的值会阻扰prev的前进,但只要cur再次找到比key小的值两者就会交换,prev就像是不断地推着比key大的值往后排。

3与7交换 

9与4交换

就这样持续到cur走出数组,这时可以看到prev的指向数是比key小的,最后prev与key进行交换。

写代码我们要注意一个地方,就是记得要在cur找小的时候添加一个条件如果该趟找不到小的已经越界了就及时退出,否则prev就会继续++,打乱了key的正确位置。

int PartSort3(int* a, int left, int right)
{int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int key = left;int prev = left;int cur = prev + 1;while (cur <= right){//找小while (cur<=right&&a[cur] >= a[key]){cur++;}//当找不到小时if (cur > right){break;}else{prev++;Swap(&a[prev], &a[cur]);}}Swap(&a[key], &a[prev]);return key;}

还有一种写法,我们可以观察到cur无论是找小还是找不到小都会++,那不妨可以这样写:

int PartSort3(int* a, int left, int right)
{int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int key = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[key]){prev++;Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[key], &a[prev]);return key;}

注意!这两个优化的方法并不能提高快排的算法效率,只是思想上的优化,便于我们更好理解而已。

四.递归优化

我们再来处理优化递归的问题:

满二叉树最后一层节点会占总节点的50%,因为一共有2^h-1个节点,最后一层有2^(h-1)个

对比到快排的递归而言,为了让这10个数有序而走了那么多次递归有点不划算。

那如果10个数我们不用递归而采用直接插入法的话可以效率可以提高80%-90%,因为递归最后三层的消耗占据很多,在处理数量级小的情况下会很浪费。

代码部分: 

void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}if ((end - begin + 1) > 10){int key = PartSort3(a, begin, end);QuickSort(a, begin, key - 1);QuickSort(a, key+1, end);}else{InsertSort(a + begin, end - begin + 1);}
}

 

这是最精妙的一步(小区间优化,小区间不再递归分割排序,降低递归次数),由于我们在不断递归的过程中那些后面被分割的许多个小组序列会占据大多数空间,所以我们统一划定一个标准,只要是小于10个的范围都直接插入法去解决,又因为我们划分的无数个子树都对应原数组不同的位置,那我们就分别用[begin,end]来规定它们,当我们用到直接插入排序时,只要在原数组地址加上begin就可以对应到自己的位置。

五.非递归

非递归的关键就是能够控制与保存区间——借助栈

我们先把数组的范围录入栈中

找到key的下标后把0-9取出录入我们的右区间6-9 

再把左区间0-4录入

之所以先入右再入左是因为这样可以先把左区间给取出来(栈的特点),然后下一次循环栈不为空则取出左区间走,0-4走完单趟选出key后继续分割

0-4分割成0-1与3-4,我们再把它们分别录入栈中。 

再把0-1取出来选出key为1后分割成0-0与2-1(2-1说明这里已经没有数了,也可以参考范围[key+1,end],)而这两个区间也不用继续入栈了(没啥好分的了)。

 我们可以发现这就是递归的过程,只不过我们需要用栈以非递归的形式实现

接着我们取出3-4进行分割,然后按照区间规则它分出的两区间不用再入栈了。

就这样以此类推直到栈为空结束。

void QuickSortNonR(int* a, int begin, int end)
{ST st;STInit(&st);//入栈,先入右,如9STPush(&st, end);//再入左,如0STPush(&st, begin);while (!STEmpty(&st)){//准备出栈,获取栈顶元素,如0int left = STTop(&st);//出栈,如0STPop(&st);//准备出栈,获取栈顶元素,如9int right = STTop(&st);//出栈,如9STPop(&st);//通过获取的元素构成范围来寻找key,【0-9】int key = PartSort3(a, left, right);//[left,key-1]key[key+1,right]//对范围如【0-9】进行分割,先入栈右区间再入栈左区间//准备入6-9//判断区间合理性,等于或大于不能放if (key + 1 < right){STPush(&st, right);//如入9STPush(&st, key+1);//如入6}//6-9已经录入//同理把0-5录入if (left < key - 1){STPush(&st, key-1);//如入5STPush(&st, left);//如入0}//现在第一层结束后栈顶由上到下就是0 5  6 9//至此由第一层分割的范围录入结束,后面就是判断栈里是否为空(还有没有范围)//如果栈不为空则继续执行这个循环,直到为空的时候,非递归也就完成了。}
}

 栈相关代码:对于栈功能还不熟悉的友友也可以移步我的这篇文章学习一下:https://mp.csdn.net/mp_blog/creation/editor/133249808

#include "Stack.h"void STInit(ST* ps)
{assert(ps);ps->a = NULL;ps->capacity = 0;ps->top = 0;
}void STDestroy(ST* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0;
}void STPush(ST* ps, STDataType x)
{assert(ps);// 11:40if (ps->top == ps->capacity){int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}ps->a = tmp;ps->capacity = newCapacity;}ps->a[ps->top] = x;ps->top++;
}void STPop(ST* ps)
{assert(ps);// assert(ps->top > 0);--ps->top;
}STDataType STTop(ST* ps)
{assert(ps);// assert(ps->top > 0);return ps->a[ps->top - 1];
}int STSize(ST* ps)
{assert(ps);return ps->top;
}bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}

4b12323f94834afd9ec146a3c10df229.jpeg六.结语

本文整体上是对快排进行的优化,让它的性能更加强大,另外也帮助我们在掌握好递归的同时也能运用好非递归。最后感谢大家的观看,友友们能够学习到新的知识是额滴荣幸,期待我们下次相见~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/642246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#,字符串匹配(模式搜索)有限自动机(Finite Automata)算法的源代码

一、有限状态自动机 图中两个圆圈&#xff0c;也叫节点&#xff0c;用于表示状态&#xff0c;从图中可以看成&#xff0c;它有两个状态&#xff0c;分别叫0和1。从每个节点出发&#xff0c;都会有若干条边。当处于某个状态时&#xff0c;如果输入的字符跟该节点出发的某条边的内…

用Axure RP 9制作滑块

制作流程 1.打开界面 放置一个水平线 修改长为400 线段为5 2.放入圆 如图 3.修改圆的长和宽 如图 4.将圆变成动态面板 5.设置交互事件 如图 6.增加交互事件 7.增加 8.修改成跟随水平

基于springboot+vue的网上点餐系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 背景和意…

php基础学习之数据类型

php数据类型的基本概念 数据类型&#xff1a;data type&#xff0c;在PHP中指的是数据本身的类型&#xff0c;而不是变量的类型。 PHP 是一种弱类型语言&#xff0c;变量本身没有数据类型。 把变量类比成一个杯子&#xff08;容器&#xff09;&#xff0c;杯子可以装雪碧、可…

STL之unordered_map使用方法

这里写目录标题 STL之unordered_map使用方法1.什么是STL呢2.unordered_map2.1 头文件&#xff1a;2.2 怎么创建&#xff1a;2.3 初始化&#xff1a;2.4 根据key获取对应value值&#xff1a;2.5 遍历&#xff0c;判断key是否存在&#xff1a;2.6 怎么根据迭代器it获取key和value…

Jenkins中文插件安装与使用

安装中文插件 进入Jenkins的系统管理—插件管理&#xff0c;选择Available plugins搜索Locale&#xff0c;进行下载安装 使用 安装完成之后&#xff0c;进入系统配置&#xff0c;找到Locale&#xff0c;Default Language输入zh_CN为中文模式&#xff0c;输入en_US为英文模式 …

Flutter 自定义AppBar实现滚动渐变

1、使用ListView实现上下滚动。 2、使用Stack&#xff1a;允许将其子部件放在彼此的顶部&#xff0c;第一个子部件将放置在底部。所以AppBar&#xff0c;写在ListView下面。 3、MediaQuery.removePadding&#xff1a;当使用ListView的时候发现&#xff0c;顶部有块默认的Padd…

数据的存储

目录 1 -> 数据类型的介绍 1.1 -> 类型的基本归类 2 -> 整型在内存中的存储 2.1 -> 原码、反码、补码 2.2 -> 大小端介绍 3 -> 浮点型在内存中的存储 3.1 -> 浮点数存储规则 1 -> 数据类型的介绍 基本内置类型有&#xff1a; char /…

视频转换成文字,原来转换的方法这么简单!

在我们的生活中&#xff0c;不少小伙伴是否遇到过这样的情况&#xff1f;观看网络视频时&#xff0c;由于解说内容极为引人入胜&#xff0c;忍不住想将其内容记录下来&#xff0c;但这手动逐句整理的过程既耗时又费力。幸运的是&#xff0c;经过一番努力查找&#xff0c;确实有…

【C++杂货铺】三分钟彻底搞懂如何使用C++中max函数

&#x1f308;前言 欢迎收看本期【C杂货铺】&#xff0c;这期内容&#xff0c;我们将围绕C中max函数部分进行讲解&#xff0c;包含了如何查询库函数&#xff0c;max函数的使用方法灯。如果你想学习C&#xff0c;或者刚学完C语言衔接C&#xff0c;那么这篇文章将会非常有效的帮助…

RC滤波电路的原理

RC滤波电路分为低通滤波和高通滤波 低通滤波通过低频信号 看上面这两个电路 先分析低通滤波 由于电容C具有隔直通交的特性&#xff0c;所以输入的高频分量相当于经过电阻R后直接对地短接&#xff0c;并没有输出到后端负载上&#xff0c;只有低频的输入分量才会输出到后端。 电…

JAVA输入任意一个数字,实现递减求和(计算任意整数n的和)

摘要&#xff1a;本文介绍了使用Java编程语言计算任意整数n及其之前所有整数的和的示例代码。代码使用了Scanner类来读取用户输入的整数值&#xff0c;并通过循环计算出和结果并生成计算公式字符串。 内容&#xff1a; 在这个示例中&#xff0c;我们将展示如何使用Java编程语言…

k8s-helm

Helm: 什么是helm,在没有这个heml之前&#xff0c;deployment service ingress的作用就是通过打包的方式&#xff0c;把deployment service ingress这些打包在一块&#xff0c;一键式的部署服务&#xff0c;类似于yum 官方提供的一个类似于安全仓库的功能&#xff0c;可以实现…

【Linux】【实战系列】10 分钟掌握日常开发中 Linux 文本与文件处理命令

文章目录 文本查看和处理cattailheadmore & lessmoreless grep组合融合技 awk 文本编辑vi & vim三种模式使用基本使用其它使用技巧 文件搜索find 最后个人简介 hello&#xff0c;大家好&#xff0c;我是 Lorin&#xff0c;今天和大家分享一期 Linux 命令实战教学&#…

WebAssembly002 emcc Emscripten js端传入数组给c++

Emscripten下载 安装Emscripten&#xff1a;可以在Emscripten的官方网站&#xff08;https://emscripten.org/&#xff09;上找到安装说明。我的踩坑记录在&#xff1a;WebAssembly002 emcc install 解决 Error: Downloading URL ‘https://storage.googleapis.com/…‘ erro…

第九站(17天):C++IO流

文件IO流 对象:文件,控制台,特定数据类型stringstream (写数据输出流out,读数据输入流in) ofstream : ofstream outfile;//输出流:从键盘输出数据,写入到文件 //文件打开默认位ios::out//字节覆盖写 //可以截断设置为:ios::out | ios::trunc//将之前文件全部…

关于网络模型的笔记

1. OSI 七层参考模型&#xff1a; 简介&#xff1a; 七层模型&#xff0c;亦称 OSI&#xff08;Open System Interconnection&#xff09;参考模型&#xff0c;即开放式系统互联。参考模型 是国际标准化组织&#xff08;ISO&#xff09;制定的一个用于计算机或通信系统间互联…

DolphinScheduler-3.2.0集群部署教程

本文目录 1.集群部署方案(2 Master 3 Worker)2.前置准备工作3.端口说明4.DS集群部署1.时间同步2.配置用户、权限3.配置集群免密登陆4.ZK集群启动5.初始化数据库1.创建数据库、用户、授权2.解压缩安装包3.添加MySQL驱动至libs目录 6.配置文件修改1.dolphinscheduler_env.sh 配置…

基于YOLOv5、v7、v8的竹签计数系统的设计与实现

文章目录 前言效果演示一、实现思路① 算法原理② 程序流程图 二、系统设计与实现三、模型评估与优化① Yolov5② Yolov7③Yolov8 四、模型对比 前言 该系统是一个综合型的应用&#xff0c;基于PyTorch框架的YOLOv5、YOLOv7和YOLOv8&#xff0c;结合了Django后端和Vue3前端&am…

【PyTorch】记一次卷积神经网络优化过程

记一次卷积神经网络优化过程 前言 在深度学习的世界中&#xff0c;图像分类任务是一个经典的问题&#xff0c;它涉及到识别给定图像中的对象类别。CIFAR-10数据集是一个常用的基准数据集&#xff0c;包含了10个类别的60000张32x32彩色图像。在上一篇博客中&#xff0c;我们已…