imgaug库图像增强指南(34):揭秘【iaa.Clouds】——打造梦幻般的云朵效果

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

专栏

  • 数据增强专栏(频繁更新,收藏加关注,从此掌握数据增强~)

数据增强博客链接

链接主要内容
imgaug库图像增强指南(23):从基础到进阶——全面掌握iaa.SaltAndPepper的使用方法保姆级介绍如何使用 SaltAndPepper方法 为图像添加椒盐噪声
imgaug库图像增强指南(24):iaa.CoarseSaltAndPepper——粗粒度椒盐噪声的魔力(万字长文)保姆级介绍如何使用 CoarseSaltAndPepper方法 为图像添加粗粒度的椒盐噪声图像块
imgaug库图像增强指南(25):从基础到进阶——全面掌握iaa.Salt的使用方法保姆级介绍如何使用 Salt方法 为图像添加盐噪声
imgaug库图像增强指南(26):从基础到进阶——全面掌握iaa.CoarseSalt的使用方法保姆级介绍如何使用 CoarseSalt方法 为图像添加粗粒度的盐噪声图像块
imgaug库图像增强指南(27):从基础到进阶——全面掌握iaa.Pepper的使用方法保姆级介绍如何使用 Pepper方法 为图像添加胡椒噪声
imgaug库图像增强指南(28):从基础到进阶——全面掌握iaa.CoarsePepper的使用方法保姆级介绍如何使用CoarsePepper方法为图像添加粗粒度的胡椒噪声图像块
imgaug库图像增强指南(29):iaa.Invert——RGB图像的颜色反转与细节探索保姆级介绍如何使用Invert方法实现图像的颜色反转
imgaug库图像增强指南(31):iaa.JpegCompression——探索压缩与质量的微妙平衡保姆级介绍如何使用JpegCompression方法压缩图像

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— Clouds方法


Clouds方法

功能介绍

iaa.Cloudsimgaug库中的一个方法,用于模拟云彩的纹理和外观。云彩是自然界中常见的景象,其形状、颜色和纹理在不同的光照和观察角度下会有所变化。iaa.Clouds方法通过模拟这些特性,能够为图像添加逼真的云彩效果。

使用iaa.Clouds方法,你可以将云彩纹理应用于任何图像,为天空或其他背景部分添加丰富的云彩细节。该方法能够模拟云彩的形状、颜色和光照效果,使得添加的云彩与原始图像融为一体,提升图像的自然感和真实感。

以下是一些使用iaa.Clouds方法的场景示例:

  1. 自然景观摄影后期处理:在自然景观摄影中,云彩往往是画面中重要的组成部分。使用iaa.Clouds方法可以轻松地为照片添加逼真的云彩效果,增强画面的视觉效果和氛围。
  2. 创意插画与合成:在创意插画和图像合成中,云彩往往是创造梦幻、浪漫或神秘氛围的重要元素。使用iaa.Clouds方法可以快速地为作品添加所需的云彩效果,提升画面的表现力。
  3. 虚拟现实与游戏开发:在虚拟现实和游戏开发中,逼真的云彩效果对于营造沉浸式体验至关重要。使用iaa.Clouds方法可以轻松地实现高质量的云彩渲染,为虚拟环境和游戏场景增添真实感。
  4. 艺术创作与特效制作:在电影、广告和动画等艺术创作中,云彩效果常常用于增强视觉冲击力或传达某种情感。使用iaa.Clouds方法可以为作品添加个性化的云彩特效,使其更具表现力和吸引力。###

语法

import imgaug.augmenters as iaa
aug = iaa.Clouds(seed=None, name=None, random_state="deprecated", deterministic="deprecated")

以下是对iaa.Clouds方法中各个参数的详细介绍:

  1. seed
  • 类型:整数|None
  • 描述:用于设置随机数生成器的种子。如果提供了种子,则结果将是可重复的。默认值为None,表示随机数生成器将使用随机种子。
  1. name
  • 类型:字符串或None
  • 描述:用于标识增强器的名称。如果提供了名称,则可以在日志和可视化中识别该增强器。默认值为None,表示增强器将没有名称。

示例代码

  1. 使用不同的seed
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建数据增强器
aug1 = iaa.Clouds(seed=0)
aug2 = iaa.Clouds(seed=1)
aug3 = iaa.Clouds(seed=2)# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化(使用不同的seed)

可以从图1看到:当使用不同的seed时,新图像会产生三个不同的视觉效果。

  1. 使用相同的seed
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建数据增强器
aug1 = iaa.Clouds(seed=0)
aug2 = iaa.Clouds(seed=0)
aug3 = iaa.Clouds(seed=0)# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化(使用相同的seed)

可以从图2看到:当使用相同的seed时,新图像会产生完全相同的视觉效果。

总结

从两个示例代码中,我们可以清晰地观察到,当种子值(seed)保持不变时,图像产生的视觉效果会保持一致。然而,当我们调整种子值时,图像的视觉效果会发生变化。因此,为了精确地控制数据增强的结果,根据实际需求合理地调整种子参数是至关重要的。这样的调整不仅可以确保数据增强的稳定性和可重复性,而且还有助于提高模型的泛化能力。


小结

imgaug是一个顶级的图像增强库,具备非常多的数据增强方法。它为你提供创造丰富多样的训练数据的机会,从而显著提升深度学习模型的性能。通过精心定制变换序列和参数,你能灵活应对各类应用场景,使我们在处理计算机视觉的数据增强问题时游刃有余。随着深度学习的持续发展,imgaug将在未来持续展现其不可或缺的价值。因此,明智之举是将imgaug纳入你的数据增强工具箱,为你的项目带来更多可能性。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641883.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql 导入数据 1273 - Unknown collation: ‘utf8mb4_0900_ai_ci‘

前言: mysql 导入数据 遇到这个错误 1273 - Unknown collation: utf8mb4_0900_ai_ci 具体原因没有深究 但应该是设计数据库的 字符集类型会出现这个问题 例如: char varchar text..... utf8mb4 类型可以存储表情 在现在这个时代会用很多 以后会用的更多 所以不建议改…

SV-7101V网络音频终端产品简介

SV-7101V网络音频终端产品简介 网络广播终端SV-7101V,接收网络音频流,实时解码播放。本设备只有网络广播功能,是一款简单的网络广播终端。提供一路线路输出接功放或有源音箱。18123651365微信 产品特点 ■ 提供固件网络远程升级■ 标准RJ…

CSS之边框样式

让我为大家介绍一下边框样式吧!如果大家想更进一步了解边框的使用,可以阅读这一篇文章:CSS边框border 属性描述none没有边框,即忽略所有边框的宽度(默认值)solid边框为单实线dashed边框为虚线dotted边框为点线double边框为双实线 代码演示&…

教你怎么用Docker 部署前端

越来越多的前端团队选择用 Docker 部署前端项目,方法是将项目打包成一个镜像,然后在服务端直接拉镜像启动项目。这种方式可以忽略服务器环境差异,更容易做版本管理。 但我们平常使用 Docker 拉取镜像时,默认会从 Docker Hub 这个…

PWM调光 降压恒流LED芯片FP7127:为照明系统注入新能量(台灯、GBR、调光电源、汽车大灯)

目录 一、降压恒流LED芯片FP7127 二、降压恒流LED芯片FP7127具有以下特点: 三、降压恒流LED芯片FP7127应用领域: LED照明和调光的新纪元随着LED照明技术的不断发展,人们对于照明调光的需求也越来越高。PWM调光技术作为一种常用的调光方法&…

一、认识 JVM 规范(JVM 概述、字节码指令集、Class文件解析、ASM)

1. JVM 概述 JVM:Java Virtual Machine,也就是 Java 虚拟机 所谓虚拟机是指:通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的计算机系统。 即:虚拟机是一个计算机系统。这种计算机系统运行在完全隔离的环境中…

【心得】java反序列化漏洞利用启蒙个人笔记

目录 前置基础概念 java的反序列化利用概念baby题 例题1 例题2 java反序列化启蒙小结: URLDNS链 一句话总结: 简单分析: 利用点: 示例: 前置基础概念 序列化 类实例->字节流 反序列化 字节流->类实…

卡尔曼滤波器原理By_DR_CAN 学习笔记

DR_CAN卡尔曼滤波器 Kalman Filter Recursive Algorithm迭代过程 数学基础正态分布和6-SigmaData FusionCovariance MatrixState Space Representation离散化推导 linearizationTaylor Series2-DSummary Step by Step Derivation of Kalman Gain矩阵求导公式 Prior / Posterio…

如何在Docker上运行Redis

环境: 1.windows系统下的Docker deckstop 1.Pull Redis镜像 2.运行Redis镜像 此时,Redis已经启动,我们登录IDEA查看下是否连接上了 显示连接成功,证明已经连接上Docker上的Redis了

积分梳状滤波器CIC原理与实现

CIC(Cascade Intergrator Comb):级联积分梳状滤波器,是由积分器和梳状滤波器级联而得。滤波器系数为1,无需对系数进行存储,只有加法器、积分器和寄存器,资源消耗少,运算速率高&#…

如何基于 ESP32 芯片测试 WiFi 连接距离、获取连接的 AP 信号强度(RSSI)以及 WiFi吞吐测试

测试说明: 测试 WiFi 连接距离,是将 ESP32 作为 WiFi Station 模式来连接路由器,通过在开阔环境下进行拉距来测试。另外,可以通过增大 WiFi TX Power 来增大连接距离。 获取连接的 AP 信号强度,一般可以通过 WiFi 扫描…

Java应用崩溃的排查流程

目录 分析问题 hs_err_pid.log 上周排查了一个java应用的崩溃问题,在这里记录一下。 分析问题 首先是排查到/tmp目录下有很多的core文件,形式类似: core-18238-java-1705462412 1.3 GB 程序崩溃数据 2024-01-17 11:33:44 core-18108…

Leetcode28-合并相似的物品(2363)

1、题目 给你两个二维整数数组 items1 和 items2 ,表示两个物品集合。每个数组 items 有以下特质: items[i] [valuei, weighti] 其中 valuei 表示第 i 件物品的 价值 ,weighti 表示第 i 件物品的 重量 。 items 中每件物品的价值都是 唯一…

语义分割常用评价指标

在图像处理领域中,语义分割是很重要的一个任务。在实际项目开发中,评估模型预测效果以及各指标的含义对于优化模型极为重要。 本文将主要评价指标的计算算法进行了详细说明,并加上注释解释每个指标的含义。这对理解各指标背后的数学原理以及能否在实践中应用或许有…

GPS位置虚拟软件 AnyGo mac激活版

AnyGo for Mac是一款一键将iPhone的GPS位置更改为任何位置的强大软件!使用AnyGo在其iOS或Android设备上改变其GPS位置,并在任何想要的地方显示自己的位置。这对那些需要测试应用程序、游戏或其他依赖于地理位置信息的应用程序的开发人员来说非常有用&…

Python - SnowNLP 情感分析与自定义训练

目录 一.引言 二.SnowNLP 情感分析 1.安装 SnowNLP 2.测试 SnowNLP 三.SnowNLP 自定义训练 1.数据集准备 2.训练与保存 3.模型替换 4.模型测试 5.SnowNLP 原理 ◆ Bayes 公式 ◆ 先验概率 ◆ 后验概率 ◆ 情感模型 四.总结 一.引言 SnowNLP 是一个基于 Python …

Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心,Kotlin

Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心,Kotlin 在 Android双击图片放大移动图中双击点到ImageView区域中心,Kotlin-CSDN博客 基础上,这次使用ScaleGestureDetector检测两根手指的缩放动作&a…

Python如何叠加两张图片

我这里有如下两张图片,需要把他们叠加在一起,进行查看。这两张图片的大小都是300 300。不拼接在一起就不方便查看。需要把左边的小图,放到右边大图的中间。 一、拼接两个图片的代码 要解决这个问题,你可以使用fromarray()方法将…

JoyRL Actor-Critic算法

策略梯度算法的缺点 这里策略梯度算法特指蒙特卡洛策略梯度算法,即 REINFORCE 算法。 相比于 DQN 之类的基于价值的算法,策略梯度算法有以下优点。 适配连续动作空间。在将策略函数设计的时候我们已经展开过,这里不再赘述。适配随机策略。由…

MATLAB数据处理: 每种样本类型随机抽样

tn5;% 每种类型随机抽样数 indextrain[];% 训练样本序号集 for i1:typenumber index301 find(typemat i); n2length(index301); index302randperm(n2); index401index301(index302(1:tn)); indextrain[indextrain; index401]; end 该代码可以对大样…