代码随想录算法训练营DAY24|回溯1

算法训练DAY24|回溯1

第77题. 组合

力扣题目链接

给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。

示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]

上面我们说了要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。

一些同学本来对递归就懵,回溯法中递归还要嵌套for循环,可能就直接晕倒了!

如果脑洞模拟回溯搜索的过程,绝对可以让人窒息,所以需要抽象图形结构来进一步理解。

我们在关于回溯算法,你该了解这些! 中说到回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

那么我把组合问题抽象为如下树形结构:

77.组合

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

在关于回溯算法,你该了解这些! 中我们提到了回溯法三部曲,那么我们按照回溯法三部曲开始正式讲解代码了。

#回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果

其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

为什么要有这个startIndex呢?

建议在77.组合视频讲解 (opens new window)中,07:36的时候开始听,startIndex 就是防止出现重复的组合

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

77.组合2

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)
  • 回溯函数终止条件

什么时候到达所谓的叶子节点了呢?

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

77.组合3

此时用result二维数组,把path保存起来,并终止本层递归。

所以终止条件代码如下:

if (path.size() == k) {result.push_back(path);return;
}
  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

77.组合1

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历path.push_back(i); // 处理节点backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始path.pop_back(); // 回溯,撤销处理的节点
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

关键地方都讲完了,组合问题C++完整代码如下:

class Solution {
private:vector<vector<int>> result; // 存放符合条件结果的集合vector<int> path; // 用来存放符合条件结果void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n; i++) {path.push_back(i); // 处理节点backtracking(n, k, i + 1); // 递归path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {result.clear(); // 可以不写path.clear();   // 可以不写backtracking(n, k, 1);return result;}
};
  • 时间复杂度: O(n * 2^n)

  • 空间复杂度: O(n)

还记得我们在关于回溯算法,你该了解这些! 中给出的回溯法模板么?

如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}
​for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

对比一下本题的代码,是不是发现有点像! 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。

#总结

组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。

从而引出了回溯法就是解决这种k层for循环嵌套的问题。

然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。

接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。

#剪枝优化

我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。

在遍历的过程中有如下代码:

for (int i = startIndex; i <= n; i++) {path.push_back(i);backtracking(n, k, i + 1);path.pop_back();
}

这个遍历的范围是可以剪枝优化的,怎么优化呢?

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:

77.组合4

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

注意代码中i,就是for循环里选择的起始位置。

for (int i = startIndex; i <= n; i++) {

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

优化后整体代码如下:

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方path.push_back(i); // 处理节点backtracking(n, k, i + 1);path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}
};

#剪枝总结

本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。

所以我依然是把整个回溯过程抽象为一棵树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。

##

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/640638.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode连不上虚拟机,一直密码错误

最近在做毕设&#xff0c;但是vscode使用连接不上虚拟机&#xff0c;我以为是网络配置的问题&#xff0c;一顿查阅没找到原因。 后来查了一下ssh的日志&#xff0c;发现ssh有消息&#xff0c;但是也提示密码错误。 没找到密码配置格式什么的&#xff0c;经查看sshd配置文件发现…

工业相机与镜头参数及选型

文章目录 1、相机成像系统模型1.1 视场1.2 成像简化模型 2、工业相机参数2.1 分辨率2.2 靶面尺寸2.3 像元尺寸2.4 帧率/行频2.5 像素深度2.6 动态范围2.7 信噪比2.8 曝光时间2.9 相机接口 3、工业镜头参数3.1 焦距3.2 光圈3.3 景深3.4 镜头分辨率3.5 工作距离&#xff08;Worki…

微信小程序入门,学习全局配置与页面配置

目录 一、微信小程序 二、微信小程序的全局配置 三、微信小程序的页面配置 四、全局配置与页面配置的区别 一、微信小程序 微信小程序是一种基于微信平台的应用程序&#xff0c;它可以在微信内部直接运行&#xff0c;无需下载安装。微信小程序具有以下特点和优势&#xff…

Spring Boot自动配置原理

1.SpringBootApplication注解 springboot是基于spring的新型的轻量级框架&#xff0c;最厉害的地方当属**自动配置。**那我们就可以根据启动流程和相关原理来看看&#xff0c;如何实现传奇的自动配置 SpringBootApplication//标注在某个类上&#xff0c;表示这个类是SpringBo…

<蓝桥杯软件赛>零基础备赛20周--第15周--快速幂+素数

报名明年4月蓝桥杯软件赛的同学们&#xff0c;如果你是大一零基础&#xff0c;目前懵懂中&#xff0c;不知该怎么办&#xff0c;可以看看本博客系列&#xff1a;备赛20周合集 20周的完整安排请点击&#xff1a;20周计划 每周发1个博客&#xff0c;共20周。 在QQ群上交流答疑&am…

【设计模式】张一鸣笔记:责任链接模式怎么用?

我将通过一个贴近现实的故事——请假审批流程&#xff0c;带你了解和掌握责任链模式。 什么是责任链模式&#xff1f; 责任链模式是一种行为设计模式&#xff0c;它让你可以避免将请求的发送者与接收者耦合在一起&#xff0c;让多个对象都有处理请求的机会将这个对象连成一条…

同样是IT行业,测试和开发薪资真就差这么大吗?

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

前端学习笔记 7:小兔鲜

前端学习笔记 7&#xff1a;小兔鲜 准备工作 创建项目 创建项目&#xff1a; npm init vuelatest相关选项如下&#xff1a; 在src目录下添加以下目录&#xff1a; 别名路径联想 默认情况下在 VSCode 中输入import xxx from ...时不会启用路径联想功能&#xff0c;要启用需…

使用宝塔面板安装wiki.js详细教程

因为在安装过程中遇到了一些问题&#xff0c;花费了很长时间在解决问题上。根据这篇教程可以少踩很多坑。点赞加关注吧。 准备运行环境 Nodejs 在宝塔面板的软件商店中找到nodejs版本管理器并安装。 点击设置&#xff0c;选择一个稳定版安装。 PostgreSQL 官方推荐的数据库是…

用户洞察:精准解读用户的真实需求!

洞察用户需求的过程和谈恋爱一样。你不能简简单单地问客户&#xff0c;你想要什么&#xff1f;你有什么痛点&#xff1f;这样的问法是无法得到任何有价值的信息。这就好比谈恋爱的场景&#xff0c;如果你问对方想吃什么&#xff0c;大概率会得到“随便”“都行”这类的答案&…

力扣62. 不同路径

动态规划 思路&#xff1a; 定义 dp[r][c] 为到达坐标 (r, c) 的路径数&#xff1a; 它只能有同一行左边相邻方格向右到达或者同一列上方相邻方格向下到达&#xff1b;状态转移方程&#xff1a; dp[r][c] dp[r][c - 1] dp[r - 1][c]初始状态 dp[0][0] 1第一行的路径数是 1第…

2526. 随机数生成器(BSGS,推导)

题目路径&#xff1a; https://www.acwing.com/problem/content/2528/ 思路&#xff1a;

HNU-数据挖掘-实验1-实验平台及环境安装

数据挖掘课程实验实验1 实验平台及环境安装 计科210X 甘晴void 202108010XXX 文章目录 数据挖掘课程实验<br>实验1 实验平台及环境安装实验背景实验目标实验步骤1.安装虚拟机和Linux平台&#xff0c;熟悉Ubuntu环境。2.在Linux平台上搭建Python平台&#xff0c;并安装…

esp32-idf eclipse 分区表(partition table / NVS)的读写demo

前言&#xff1a; 分区表&#xff08;Partition Table&#xff09;和 NVS&#xff08;Non-Volatile Storage&#xff09;是 ESP-IDF 中用于存储数据的两种不同机制。 分区表&#xff08;Partition Table&#xff09;&#xff1a; 分区表定义了将 Flash 存储器划分为不同逻辑分…

RT-DETR 模型改进 | AKConv:具有任意采样形状和任意参数数量的卷积核

基于卷积操作的神经网络在深度学习领域取得了显著的成果,但标准卷积操作存在两个固有缺陷。一方面,卷积操作受限于局部窗口,无法捕捉其他位置的信息,而其采样形状是固定的。另一方面,卷积核的大小固定为kk,呈固定的正方形形状,而参数数量往往随大小呈平方增长。显然,不…

2024 年大促入手哪些云服务器实用划算?

2024年各大云厂商的“价格战”又已拉开帷幕&#xff0c;作为用户的我们最为关心的是这些云服务商的年终大促中&#xff0c;实用划算的云服务器配置有哪些&#xff1f;小编看了一下&#xff0c;今年的年终大促活动中&#xff0c;国内云平台几位大佬&#xff0c;阿里云&#xff0…

C++入门学习(十一)字符型

C中的字符型可以表示ASCII码中的所有字符&#xff0c;包括字母、数字、标点符号等。 ASCII码是一种用于编码字符的编码系统&#xff0c;它使用不同的数值来表示不同的字符。ASCII码使用7位或8位二进制数来表示每个字符&#xff0c;因此可以表示128或256个不同的字符。 在ASCI…

构建开源的多模态 RAG 系统

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。 欢迎关注公众号(NLP Research),及时查看最新内容 原文标题:Building an Open Source Multi-Modal RAG System 原文地址:https://medium.com/nadsoft/buil…

性能利器Caffeine缓存全面指南

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;今天咱们聊聊Caffeine缓存&#xff0c;小黑在网上购物&#xff0c;每次查看商品都要等几秒钟&#xff0c;那体验肯定不咋地。但如果用了缓存&#xff0c;常见的商品信息就像放在口袋里一样&#xff0c;随时取用&…

杭电网课笔记

技巧 1.判断得数为整数还是小数&#xff0c;可以%1&#xff0c;得数为0是整数 或者用instanceof Integer number 9; // 自动装箱 System.out.println(number instanceof Integer); // 输出&#xff1a;true 2.a * b 最大公约数 * 最小公倍数 LCM 最小公倍数 GCD 最大公…