esp32-idf eclipse 分区表(partition table / NVS)的读写demo

前言:

分区表(Partition Table)和 NVS(Non-Volatile Storage)是 ESP-IDF 中用于存储数据的两种不同机制。

  1. 分区表(Partition Table):

    • 分区表定义了将 Flash 存储器划分为不同逻辑分区的方式。每个分区都具有特定的大小、起始地址和类型,可以用于存储不同类型的数据,例如应用程序、文件系统、配置数据等。
    • 分区表是在编译时定义的,通常由 partitions.csv 或 partitions_singleapp.csv 文件指定。这些文件描述了每个分区的信息,如分区名称、大小、起始地址等。
    • 分区表在 ESP32 系统启动时被加载到内存中,ESP-IDF 使用分区表来确定各个分区的位置和属性。通过分区表,可以访问和管理不同分区中的数据。
  2. NVS(Non-Volatile Storage):

    • NVS 是一种轻量级的键值对存储系统,用于在 Flash 存储器中保存和检索数据。它提供了一种简单的方式来存储应用程序的配置数据、状态信息等。
    • NVS 使用了一个称为 "nvs" 的特定分区,该分区被用作存储键值对数据的容器。每个键值对由一个唯一的键和相应的值组成。
    • 与其他分区不同,NVS 分区不需要在分区表中显式声明。它是 ESP-IDF 自动创建和管理的特殊分区。
    • 通过 NVS API(如 nvs_get()nvs_set() 等),应用程序可以对 NVS 进行读写操作,方便地存储和检索数据。

总结:

  • 分区表定义了 Flash 存储器中不同分区的划分和属性,用于存储各种类型的数据。
  • NVS 是一种简单的键值对存储系统,用于在 Flash 存储器中存储和检索数据,它使用一个特定的分区。
  • 分区表和 NVS 是 ESP-IDF 中不同的存储机制,用于不同的数据存储需求。分区表用于管理整个 Flash 存储器的划分,而 NVS 则提供了一种简单的方式来存储和检索数据。


partition table 示例代码:

#include <string.h>
#include <assert.h>
#include "esp_partition.h"
#include "esp_log.h"static const char *TAG = "partition_table--->";void app_main(void)
{/** This example uses the partition table from ../partitions_example.csv. For reference, its contents are as follows:**  nvs,        data, nvs,      0x9000,  0x6000,*  phy_init,   data, phy,      0xf000,  0x1000,*  factory,    app,  factory,  0x10000, 1M,*  storage,    data, ,             , 0x40000,*/
/*typedef struct {esp_flash_t* flash_chip;            !< SPI flash chip on which the partition residesesp_partition_type_t type;          !< partition type (app/data)esp_partition_subtype_t subtype;    !< partition subtypeuint32_t address;                   !< starting address of the partition in flashuint32_t size;                      !< size of the partition, in byteschar label[17];                     !< partition label, zero-terminated ASCII stringbool encrypted;                     !< flag is set to true if partition is encrypted} esp_partition_t;
*/// Find the partition map in the partition tableconst esp_partition_t *partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "storage"); //三个参数:分区类型、分区子类型和分区标签.在分区表中找到名为 "storage" 的分区assert(partition != NULL);static char store_data[] = "ESP-IDF Partition Operations Example (Read, Erase, Write)";  //写入分区的数据static char read_data[sizeof(store_data)]; 												 //存储从分区读取的数据。// Erase entire partitionmemset(read_data, 0xFF, sizeof(read_data));ESP_ERROR_CHECK(esp_partition_erase_range(partition, 0, partition->size));         		//擦除整个分区。这里使用 memset() 函数将 read_data 数组填充为 0xFF,表示将整个分区内容擦除。// Write the data, starting from the beginning of the partitionESP_ERROR_CHECK(esp_partition_write(partition, 0, store_data, sizeof(store_data)));    //将 store_data 写入分区。这里将数据写入分区的起始位置,大小为 sizeof(store_data),即存储数据的长度。ESP_LOGI(TAG, "Written data: %s", store_data);// Read back the data, checking that read data and written data matchESP_ERROR_CHECK(esp_partition_read(partition, 0, read_data, sizeof(read_data)));       //从分区中读取数据,并通过 memcmp() 函数比较读取的数据和写入的数据是否相同。如果比较结果为 0,则说明读取的数据与写入的数据一致assert(memcmp(store_data, read_data, sizeof(read_data)) == 0);ESP_LOGI(TAG, "Read data: %s", read_data);// Erase the area where the data was written. Erase size shoud be a multiple of SPI_FLASH_SEC_SIZE// and also be SPI_FLASH_SEC_SIZE alignedESP_ERROR_CHECK(esp_partition_erase_range(partition, 0, SPI_FLASH_SEC_SIZE));         //擦除之前写入的数据所占据的区域。这里擦除的大小为 SPI_FLASH_SEC_SIZE,它需要是 SPI_FLASH_SEC_SIZE 的倍数,并且与 SPI_FLASH_SEC_SIZE 对齐。// Read back the data (should all now be 0xFF's)memset(store_data, 0xFF, sizeof(read_data));ESP_ERROR_CHECK(esp_partition_read(partition, 0, read_data, sizeof(read_data)));      //读取分区中的数据,并通过比较来验证数据是否已被擦除(全为 0xFF)。assert(memcmp(store_data, read_data, sizeof(read_data)) == 0);ESP_LOGI(TAG, "Erased data");ESP_LOGI(TAG, "Example end");
}

partition table 运行结果:


NVS库的使用

1.概述

非易失性存储(Non-volatile storage) 简称 NVS, 乐鑫使用一套 NVS 库将键值对保存在 SPI flash 中。NVS 库可以使用 readwriteerase API 操作 flash 的一部分, 该库使用 data 类型和 nvs 子类型的所有分区。 应用程序可以使用 nvs_openAPI 选用 nvs 表中的分区或通过nvs_open_from_part API 指定其名称后使用其他分区。

2.NVS 可以保存的类型
无符号整型: uint8_t,uint16_t,uint32_t,uint64_t

有符号整型: int8_t, int16_t,int32_t,int64_t

字符串: 必须以 0 结尾, 因为需要知道字符串的长度, 以便保存。

二进制数据: 可变长。

暂不支持浮点数保存

字符串和二进制数据目前仅限于 1984 字节。 对于字符串, 这包括空终止符.

3. NVS 的命名空间

为了缓解不同组件之间的密钥名称之间的潜在冲突, NVS 将每个键值对分配给一个名称空间, 类似数据库中的表。 名称空间名称遵循与键名相同的规则, 即最多 15 个字符。 命名空间名 称 在 nvs_open 或 nvs_open_from_part 调 用 中 指 定 。 随 后 调 用 的 nvs_read_* ,nvs_write_*和 nvs_commit 将返回不透明句柄。 这样, 句柄与名称空间相关联, 并且键名不会与其他名称空间中的相同名称相冲突。

在不同 NVS 分区中具有相同名称的名称空间被视为单独的名称空间。

4.NVS 优势

接口更加安全

相比较于 spi_flash_read 和 spi_flash_write 等接口, NVS 不直接操作 address. 对于终端用户而已, 更加安全.

例如: 应用复杂一点, 容易 spi_flash_write(address, src, size) 不小心写到同一个地址, 或地址写覆盖, 而导致长时间 debug

接口使用接近用户习惯

NVS 接口类似于电脑上操作文件一样:

打开文件(nvs_open), 写文件(nvs_set_xxx), 保存文件(nvs_commit), 关闭文件(nvs_close)

打开文件(nvs_open), 读取文件(nvs_get_xxx), 关闭文件(nvs_close)

擦写均衡, 使 flash 寿命更长

NVS 在操作少量数据上, NVS 分区更大时, 擦写均衡表现的更为明显.

例如: flash 一个 sector 为 4KB, NVS 分配大小为一个 sector, 写同一个 64 Bytes 数据到 flash, 分别比较 spi_flash_xxx 和 nvs 写 64 次

spi_flash_write: 每次写 flash 前, 需擦除 flash. 对应: 64 次擦除 flash, 64 次写 flash

nvs: nvs 内部有擦写均衡, 有标志位记录当前有效存储. 如第一次擦除 sector, 再写 sector 0-63 Byte, 第二次写 sector 64-127 Bytes, 第 64 次(4KB/64Bytes) 写完 sector 最后一个 64 Byte. 对应: 1 次擦除 flash, 64 次写 flash

这样 NVS 减少 64 倍擦除操作, 对 flash 寿命有较大提升.

在 NVS 分区更大, 存储信息少时, 表现的更为明显.

注意事项:

  ESP32_学习笔记(一)NVS的操作(存储和读取大数组)(为什么存入数据成功,读取却为零的原因)_arduino esp32 定义最大数组-CSDN博客

5.api函数

esp_err_t  nvs_flash_init void 

初始化默认的NVS分区。

该API初始化默认的NVS分区。默认的NVS分区是在分区表中标记为“ nvs”的分区。

返回

  • 如果存储已成功初始化,则为ESP_OK。
  • ESP_ERR_NVS_NO_FREE_PAGES如果NVS存储器不包含空页(如果NVS分区被截断,则可能发生)
  • 如果在分区表中找不到带有标签“ nvs”的分区,则为ESP_ERR_NOT_FOUND
  • 来自基础闪存存储驱动程序的错误代码之一

esp_err_t nvs_flash_init_partition(const char *partition_label)

初始化指定分区的NVS闪存。

返回

  • 如果存储已成功初始化,则为ESP_OK。
  • ESP_ERR_NVS_NO_FREE_PAGES如果NVS存储器不包含空页(如果NVS分区被截断,则可能发生)
  • 如果在分区表中找不到指定的分区,则为ESP_ERR_NOT_FOUND
  • 来自基础闪存存储驱动程序的错误代码之一

参量

  • [in] partition_label:分区的标签。不得超过16个字符。

esp_err_t  nvs_flash_erase void 

擦除默认的NVS分区。

擦除默认NVS分区(带有标签“ nvs”的分区)的所有内容。

注意

如果分区已初始化,则此函数首先将其初始化。之后,必须再次初始化分区才能使用。

返回

  • ESP_OK成功
  • 如果分区表中没有标记为“ nvs”的NVS分区,则为ESP_ERR_NOT_FOUND
  • 万一取消初始化失败(不应发生),则会出现其他错误

esp_err_t nvs_set_i8(nvs_handle_thandleconst char *key, int8_t value)

给定键的设定值

给定其名称,该功能家族为键设置值。请注意,直到调用nvs_commit函数,才会更新实际存储。

返回

  • ESP_OK,如果值设置成功
  • 如果句柄已关闭或为NULL,则为ESP_ERR_NVS_INVALID_HANDLE
  • ESP_ERR_NVS_READ_ONLY如果存储句柄被打开为只读
  • 如果键名不满足约束,则为ESP_ERR_NVS_INVALID_NAME
  • ESP_ERR_NVS_NOT_ENOUGH_SPACE,如果基础存储中没有足够的空间来保存该值
  • ESP_ERR_NVS_REMOVE_FAILED如果由于闪存写入操作失败而未更新该值。但是,已写入该值,并且只要闪存操作不会再次失败,更新将在nvs重新初始化后完成。
  • 如果字符串值太长,则为ESP_ERR_NVS_VALUE_TOO_LONG

参量

  • [in] handle:从nvs_open函数获得的句柄。以只读方式打开的句柄不能使用。
  • [in] key:密钥名称。最大长度为(NVS_KEY_NAME_MAX_SIZE-1)个字符。不应该是空的。
  • [in] value:要设置的值。对于字符串,最大长度(包括空字符)为4000字节。

esp_err_tnvs_set_u8(nvs_handle_thandleconst char *key, uint8_t value)

esp_err_tnvs_set_i16(nvs_handle_thandleconst char *key, int16_t value)

esp_err_tnvs_set_u16(nvs_handle_thandleconst char *key, uint16_t value)

esp_err_tnvs_set_i32(nvs_handle_thandleconst char *key, int32_t value)

esp_err_tnvs_set_u32(nvs_handle_thandleconst char *key, uint32_t value)

esp_err_tnvs_set_i64(nvs_handle_thandleconst char *key, int64_t value)

esp_err_tnvs_set_u64(nvs_handle_thandleconst char *key, uint64_t value)

esp_err_tnvs_set_str(nvs_handle_thandleconst char *keyconst char *value)

esp_err_tnvs_get_i8(nvs_handle_thandleconst char *key, int8_t *out_value)

获得给定密钥的价值

这些函数在给定键名的情况下检索键的值。如果键不存在,或者请求的变量类型与设置值时使用的类型不匹配,则返回错误。

发生任何错误时,不会修改out_value。

所有函数都希望out_value是指向给定类型的已分配变量的指针。

// Example of using nvs_get_i32:

int32_t max_buffer_size = 4096; // default value

esp_err_t err = nvs_get_i32(my_handle, "max_buffer_size", &max_buffer_size);

assert(err == ESP_OK || err == ESP_ERR_NVS_NOT_FOUND);

// if ESP_ERR_NVS_NOT_FOUND was returned, max_buffer_size will still

// have its default value.

返回

  • ESP_OK,如果成功检索到值
  • ESP_ERR_NVS_NOT_FOUND如果请求的密钥不存在
  • 如果句柄已关闭或为NULL,则为ESP_ERR_NVS_INVALID_HANDLE
  • 如果键名不满足约束,则为ESP_ERR_NVS_INVALID_NAME
  • 如果长度不足以存储数据,则输入ESP_ERR_NVS_INVALID_LENGTH

参量

  • [in] handle:从nvs_open函数获得的句柄。
  • [in] key:密钥名称。最大长度为(NVS_KEY_NAME_MAX_SIZE-1)个字符。不应该是空的。
  • out_value:指向输出值的指针。对于nvs_get_str和nvs_get_blob可能为NULL,在这种情况下,将在length参数中返回所需的长度。

esp_err_t nvs_get_u8(nvs_handle_t句柄constchar * key,uint8_t * out_value 

esp_err_t nvs_get_i16(nvs_handle_t句柄constchar * key,int16_t * out_value 

esp_err_t nvs_get_u16(nvs_handle_t句柄constchar * key,uint16_t * out_value 

esp_err_t nvs_get_i32(nvs_handle_t句柄constchar * key,int32_t * out_value 

esp_err_t nvs_get_u32(nvs_handle_t句柄constchar * key,uint32_t * out_value 

esp_err_t nvs_get_i64(nvs_handle_t句柄constchar * key,int64_t * out_value 

esp_err_t nvs_get_u64(nvs_handle_t句柄constchar * key,uint64_t * out_value 

esp_err_tnvs_get_str(nvs_handle_thandleconst char *key, char *out_value, size_t *length)

获得给定密钥的价值

这些函数在给定键的情况下检索条目的数据。如果键不存在,或者请求的变量类型与设置值时使用的类型不匹配,则返回错误。

发生任何错误时,不会修改out_value。

所有函数都希望out_value是指向给定类型的已分配变量的指针。

nvs_get_str和nvs_get_blob函数支持WinAPI样式的长度查询。要获取存储值所需的大小,请使用零out_value和非零长度指针来调用nvs_get_str或nvs_get_blob。length参数指向的变量将设置为所需的长度。对于nvs_get_str,此长度包括零终止符。当使用非零out_value调用nvs_get_str和nvs_get_blob时,length必须非零,并且必须指向out_value中可用的长度。建议将nvs_get / set_str用于零终止的C字符串,将nvs_get / set_blob用于任意数据结构。

// Example (without error checking) of using nvs_get_str to get a string into dynamic array:

size_t required_size;

nvs_get_str(my_handle, "server_name", NULL, &required_size);

char* server_name = malloc(required_size);

nvs_get_str(my_handle, "server_name", server_name, &required_size);

// Example (without error checking) of using nvs_get_blob to get a binary data

into a static array:

uint8_t mac_addr[6];

size_t size = sizeof(mac_addr);

nvs_get_blob(my_handle, "dst_mac_addr", mac_addr, &size);

返回

  • ESP_OK,如果成功检索到值
  • ESP_ERR_NVS_NOT_FOUND如果请求的密钥不存在
  • 如果句柄已关闭或为NULL,则为ESP_ERR_NVS_INVALID_HANDLE
  • 如果键名不满足约束,则为ESP_ERR_NVS_INVALID_NAME
  • 如果长度不足以存储数据,则输入ESP_ERR_NVS_INVALID_LENGTH

参量

  • [in] handle:从nvs_open函数获得的句柄。
  • [in] key:密钥名称。最大长度为(NVS_KEY_NAME_MAX_SIZE-1)个字符。不应该是空的。
  • out_value:指向输出值的指针。对于nvs_get_str和nvs_get_blob可能为NULL,在这种情况下,将在length参数中返回所需的长度。
  • [inout] length:指向保存out_value长度的变量的非零指针。如果out_value为零,则将其设置为保持该值所需的长度。如果out_value不为零,则将其设置为写入值的实际长度。对于nvs_get_str,它包括零终止符。

esp_err_t nvs_openconstchar * namenvs_open_mode_t open_modenvs_handle_t * out_handle 

从默认NVS分区打开具有给定名称空间的非易失性存储。

多个内部ESP-IDF和第三方应用程序模块可以将其键值对存储在NVS模块中。为了减少键名上的可能冲突,每个模块可以使用其自己的名称空间。默认的NVS分区是在分区表中标记为“ nvs”的分区。

返回

  • ESP_OK,如果存储句柄已成功打开
  • 如果未初始化存储驱动程序,则为ESP_ERR_NVS_NOT_INITIALIZED
  • 如果找不到带有标签“ nvs”的分区,则为ESP_ERR_NVS_PART_NOT_FOUND
  • ESP_ERR_NVS_NOT_FOUND id名称空间尚不存在,且模式为NVS_READONLY
  • 如果名称空间名称不满足约束条件,则为ESP_ERR_NVS_INVALID_NAME
  • 基础存储驱动程序中的其他错误代码

参量

  • [in] name:命名空间名称。最大长度为(NVS_KEY_NAME_MAX_SIZE-1)个字符。不应该是空的。
  • [in] open_mode:NVS_READWRITE或NVS_READONLY。如果为NVS_READONLY,将打开一个只读句柄。该句柄将拒绝所有写请求。
  • [out] out_handle:如果成功(返回码为零),则将在此参数中返回handle。

esp_err_t  nvs_commitnvs_handle_t handle 

将所有未决的更改写入非易失性存储。

设置任何值后,必须调用nvs_commit()以确保将更改写入非易失性存储。各个实现可以在其他时间写入存储,但这不能保证。

返回

  • ESP_OK,如果更改已成功写入
  • 如果句柄已关闭或为NULL,则为ESP_ERR_NVS_INVALID_HANDLE
  • 基础存储驱动程序中的其他错误代码

参量

  • [in] handle:通过nvs_open获得的存储句柄。以只读方式打开的句柄不能使用。

void nvs_close(nvs_handle_thandle)

关闭存储句柄并释放所有分配的资源。

一旦不再使用nvs_open打开的每个句柄,应调用该函数。关闭句柄可能不会自动将更改写入非易失性存储。必须使用nvs_commit函数明确地完成此操作。在句柄上调用此函数后,将不再使用该句柄。

参量

  • [in] handle:要关闭的存储句柄

NVS 示例代码:

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "nvs.h"void app_main(void)
{// Initialize NVSesp_err_t err = nvs_flash_init();if (err == ESP_ERR_NVS_NO_FREE_PAGES || err == ESP_ERR_NVS_NEW_VERSION_FOUND) {// NVS partition was truncated and needs to be erased// Retry nvs_flash_initESP_ERROR_CHECK(nvs_flash_erase());err = nvs_flash_init();}ESP_ERROR_CHECK( err );// Openprintf("\n");printf("Opening Non-Volatile Storage (NVS) handle... ");nvs_handle_t my_handle;err = nvs_open("storage", NVS_READWRITE, &my_handle); //打开NVS存储,并将句柄保存在my_handle变量中。STORAGE_NAMESPACE是NVS存储的命名空间if (err != ESP_OK) {printf("Error (%s) opening NVS handle!\n", esp_err_to_name(err));} else {printf("Done\n");// Readprintf("Reading restart counter from NVS ... ");int32_t restart_counter = 0; // value will default to 0, if not set yet in NVSerr = nvs_get_i32(my_handle, "restart_counter", &restart_counter); //从NVS中读取键为"restart_counter"的整数值,并将结果保存在restart_counter变量中。
//        err = nvs_get_i32(my_handle, "132", &restart_counter);switch (err) {case ESP_OK:printf("Done\n");printf("Restart counter = %d\n", restart_counter);break;case ESP_ERR_NVS_NOT_FOUND:printf("The value is not initialized yet!\n");break;default :printf("Error (%s) reading!\n", esp_err_to_name(err));}// Writeprintf("Updating restart counter in NVS ... ");restart_counter++;err = nvs_set_i32(my_handle, "restart_counter", restart_counter); //将更新后的二进制数据写入 NVS 中。printf((err != ESP_OK) ? "Failed!\n" : "Done\n");// Commit written value.// After setting any values, nvs_commit() must be called to ensure changes are written// to flash storage. Implementations may write to storage at other times,// but this is not guaranteed.printf("Committing updates in NVS ... ");err = nvs_commit(my_handle);                                     //提交已写入的值到 NVS 中。printf((err != ESP_OK) ? "Failed!\n" : "Done\n");// Closenvs_close(my_handle);                                            //关闭 NVS 句柄。}printf("\n");// Restart modulefor (int i = 10; i >= 0; i--) {printf("Restarting in %d seconds...\n", i);vTaskDelay(1000 / portTICK_PERIOD_MS);}printf("Restarting now.\n");fflush(stdout);esp_restart();
}

NVS 运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/640616.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RT-DETR 模型改进 | AKConv:具有任意采样形状和任意参数数量的卷积核

基于卷积操作的神经网络在深度学习领域取得了显著的成果,但标准卷积操作存在两个固有缺陷。一方面,卷积操作受限于局部窗口,无法捕捉其他位置的信息,而其采样形状是固定的。另一方面,卷积核的大小固定为kk,呈固定的正方形形状,而参数数量往往随大小呈平方增长。显然,不…

2024 年大促入手哪些云服务器实用划算?

2024年各大云厂商的“价格战”又已拉开帷幕&#xff0c;作为用户的我们最为关心的是这些云服务商的年终大促中&#xff0c;实用划算的云服务器配置有哪些&#xff1f;小编看了一下&#xff0c;今年的年终大促活动中&#xff0c;国内云平台几位大佬&#xff0c;阿里云&#xff0…

C++入门学习(十一)字符型

C中的字符型可以表示ASCII码中的所有字符&#xff0c;包括字母、数字、标点符号等。 ASCII码是一种用于编码字符的编码系统&#xff0c;它使用不同的数值来表示不同的字符。ASCII码使用7位或8位二进制数来表示每个字符&#xff0c;因此可以表示128或256个不同的字符。 在ASCI…

构建开源的多模态 RAG 系统

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。 欢迎关注公众号(NLP Research),及时查看最新内容 原文标题:Building an Open Source Multi-Modal RAG System 原文地址:https://medium.com/nadsoft/buil…

性能利器Caffeine缓存全面指南

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;今天咱们聊聊Caffeine缓存&#xff0c;小黑在网上购物&#xff0c;每次查看商品都要等几秒钟&#xff0c;那体验肯定不咋地。但如果用了缓存&#xff0c;常见的商品信息就像放在口袋里一样&#xff0c;随时取用&…

杭电网课笔记

技巧 1.判断得数为整数还是小数&#xff0c;可以%1&#xff0c;得数为0是整数 或者用instanceof Integer number 9; // 自动装箱 System.out.println(number instanceof Integer); // 输出&#xff1a;true 2.a * b 最大公约数 * 最小公倍数 LCM 最小公倍数 GCD 最大公…

Java:扫码登录

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 一、需求背景 二、问题分析 三、对比APP和打印机设备的特点 四、设计 五、编码 总结 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、…

美团收银餐饮版培训教程

硬件连接方式及介绍: 双屏收银机 收银一体机 双屏收银机连接图 收银一体机连接图 前台打印机 后厨打印机 标签打印机 前台打印机连接图 后厨打印机连接图 其它收银机配件 软件前期设置 1、机器联网 点开桌面的设置&#xff0c;点击更多&#xff0c;点击以太网&#xff0c;最上…

SpringBoot之文件上传

1、文件上传原理&#x1f618; 表单的enctype 属性规定在发送到服务器之前应该如何对表单数据进行编码。 当表单的enctype"application/x-www-form-urlencoded"&#xff08;默认&#xff09;时&#xff0c;form表单中的数据格式为&#xff1a;keyvalue&keyvalue …

《Linux高性能服务器编程》笔记03

Linux高性能服务器编程 本文是读书笔记&#xff0c;如有侵权&#xff0c;请联系删除。 参考 Linux高性能服务器编程源码: https://github.com/raichen/LinuxServerCodes 豆瓣: Linux高性能服务器编程 文章目录 Linux高性能服务器编程第07章 Linux服务器程序规范7.1日志7.2用…

把Mybatis Generator生成的代码加上想要的注释

1 前言 在日常开发工作中&#xff0c;我们经常用Mybatis Generator根据表结构生成对应的实体类和Mapper文件。但是Mybatis Generator默认生成的代码中&#xff0c;注释并不是我们想要的&#xff0c;所以一般在Generator配置文件中&#xff0c;会设置不自动生成注释。带来的问题…

【数据结构】在链队列中你可能忽视的二三事

链队列及其基本操作的C语言实现 导言一、链队列二、链队列的基本操作的实现2.1 链队列的数据类型2.2 链队列的初始化2.2.1 带头结点的链队列的初始化2.2.3 不带头结点的链队列的初始化 2.3 链队列的判空2.3.1 带头结点的链队列的判空2.3.2 不带头结点的链队列的判空 2.4 链队列…

IS-IS:01 ISIS基本配置

这是实验拓扑&#xff0c;下面是基本配置&#xff1a; R1: sys sysname R1 user-interface console 0 idle-timeout 0 0 int loop 0 ip add 1.1.1.1 24 int g0/0/0 ip add 192.168.12.1 24 qR2: sys sysname R2 user-interface console 0 idle-timeout 0 0 int loop 0 ip add …

samba服务搭建,并将共享目录映射到windows

系统版本&#xff1a;centos7 1、centos 安装samba yum -y install samba 2、查看安装信息 rpm -qa |grep samba 3、设置开机自启动 systemctl enable smb.service systemctl enable nmb.service 4、设置samba服务器配置文件 sudo vi /etc/samba/smb.conf 注意&#…

CentOS 系统创建网卡bond0

很多时候在机房运维的过程中&#xff0c;我们会遇到客户要求的建立网卡光口的bond0设置&#xff0c;通俗点说就是将两个光口合并为一个口进行链接设置。创建这个设置是有两种设置&#xff0c;一是在安装系统的过程中对bond0进行创建设置&#xff0c;另一种就是通过系统里面对网…

Mac使用adb调试安卓手机

0x00 背景 最近windows电脑休息&#xff0c;用mac办公比较多&#xff0c;手机用时间长了&#xff0c;不太灵光&#xff0c;准备修理一番。于是要用mac调试下android手机。配置略显麻烦&#xff0c;网上的步骤多参差不齐。估计是入门步骤&#xff0c;大佬们也懒得写的太细。于是…

【趣味题-07】20240121他的第一周工资(精准推测工资)

背景需求 设计过程&#xff1a; AI写了很多的答案&#xff0c;但是都不正确 于是我去查看了网上的正确答案——47.41美元 此外&#xff0c;题目的0.99涉及了浮点数&#xff0c;非整数&#xff0c;无法range遍历 最后终于有一个答案正确的代码 通过反复测试&#xff0c;终于写出…

详细版Git的下载安装与配置(Windows)

一、git的下载 Git是一个非常好用的版本控制工具。下载地址如下&#xff1a;Git - Downloads。建议使用国内浏览器下载&#xff0c;因为不用翻墙&#xff0c;速度快。 当你用浏览器去访问上面的地址后&#xff0c;下载页面会自动识别你的电脑系统&#xff0c;如下 点击&#…

NVMe TCG安全数据存储简介

NVMe&#xff08;非易失性内存主机控制器接口规范&#xff09;与TCG&#xff08;可信计算组&#xff09;的集成主要体现在数据安全、固件验证和硬件信任根等方面&#xff0c;以确保存储设备的数据保护能力和安全性。 TCG Opal定义了一套针对自加密硬盘&#xff08;SED, Self-En…

找不到msvcr100dll或msvcr100dll丢失怎么办,5种靠谱的解决方法分享

MSVCR100.dll文件的丢失可能会引发一系列系统运行和应用程序功能上的问题。作为Microsoft Visual C运行库中的一个关键动态链接库文件&#xff0c;它的缺失会导致依赖于此文件的软件无法正常启动或执行预期功能。具体表现可能包括但不限于&#xff1a;应用程序崩溃、闪退&#…