[pytorch入门] 2. tensorboard

tensorboard简介

TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中.但是也可以独立安装,服务Pytorch等其他的框架
可以常常用来观察训练过程中每一阶段如何输出的

  • 安装
    pip install tensorboard
    
  • 启动
    tensorboard --logdir=<directory_name>
    
    会默认在6006端口打开,也可以自行制定窗口,如:
    tensorboard --logdir=logs --port=6007
    

用法

  1. 所在类:
    from torch.utils.tensorboard import SummaryWriter
    
    介绍:
    class SummaryWriter:"""Writes entries directly to event files in the log_dir to beconsumed by TensorBoard.The `SummaryWriter` class provides a high-level API to create an event filein a given directory and add summaries and events to it. The class updates thefile contents asynchronously. This allows a training program to call methodsto add data to the file directly from the training loop, without slowing downtraining."""
    
  2. 创建对象
    writer = SummaryWriter('logs') # 说明写入哪个文件夹
    
  3. 常用方法
    writer.add_image()   # 图像方式
    writer.add_scalar()  # 坐标方式writer.close()  # 使用完之后需要close
    

add_scalar()

    def add_scalar(self,tag,scalar_value,global_step=None,walltime=None,new_style=False,double_precision=False,):"""Add scalar data to summary.添加标量数据到summary中Args:tag (str): Data identifier 图表标题scalar_value (float or string/blobname): Value to save 数值(y轴)global_step (int): Global step value to record 训练到多少步(x轴)walltime (float): Optional override default walltime (time.time())with seconds after epoch of eventnew_style (boolean): Whether to use new style (tensor field) or oldstyle (simple_value field). New style could lead to faster data loading.Examples::from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter()x = range(100)for i in x:writer.add_scalar('y=2x', i * 2, i)writer.close()Expected result:.. image:: _static/img/tensorboard/add_scalar.png:scale: 50 %"""

注意:向writer中写入新事件的同时她也会保留上一个事件,这就会导致一些拟合出现问题
解决:删除之前的log文件,重新生成

add_image()

def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"):"""Add image data to summary.Note that this requires the ``pillow`` package.Args:tag (str): Data identifierimg_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data 注意数据的类型global_step (int): Global step value to record后面不用管walltime (float): Optional override default walltime (time.time())seconds after epoch of eventdataformats (str): Image data format specification of the formCHW, HWC, HW, WH, etc.Shape:img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` toconvert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job.Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long ascorresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``."""

实践

如在tensorboard中展示图片:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter('logs')
image_path = './dataset2/train/ants_image/0013035.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)writer.add_image("test",img_array,1,dataformats='HWC') # 展示读取的图片for i in range(100):writer.add_scalar('y=2x', 3*i, i)     # 绘图writer.close()
  • writer.add_image中的参数

    def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"):
    

    名称、图形向量(ndarray类型),第几步(是滑动翻页那种的,这里相当于设定是第几页,每次向后设定时不会清除原来的数据)

当前代码效果如图:
在这里插入图片描述
修改图片后:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter('logs')
image_path = './dataset2/train/ants_image/5650366_e22b7e1065.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)# 这里更新,说明为第二步
writer.add_image("test",img_array,2,dataformats='HWC')for i in range(100):writer.add_scalar('y=2x', 3*i, i)writer.close()

拖拉就会发现有两张图
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/639120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯理历年真题 —— 数学

1. 买不到的数目 这道题目&#xff0c;考得就是一个日常数学的积累&#xff0c;如果你学过这个公式的话&#xff0c;就是一道非常简单的输出问题&#xff1b;可是如果没学过&#xff0c;就非常吃亏&#xff0c;在考场上只能暴力求解&#xff0c;或是寻找规律。这就要求我们什么…

Python图像处理【19】基于霍夫变换的目标检测

基于霍夫变换的目标检测 0. 前言1. 使用圆形霍夫变换统计图像中圆形对象2. 使用渐进概率霍夫变换检测直线2.1 渐进霍夫变换原理2.2 直线检测 3. 使用广义霍夫变换检测任意形状的对象3.1 广义霍夫变换原理3.2 检测自定义形状 小结系列链接 0. 前言 霍夫变换 (Hough Transform,…

H5112C PWM调光 无频闪 高性价比 支持12V 24V 36V 48V 60V 72V 内置MOS

PWM调光芯片是一种常用于LED调光控制的芯片&#xff0c;其工作原理如下&#xff1a; 脉冲宽度调制&#xff08;PWM&#xff09;&#xff1a;PWM是一种调制技术&#xff0c;通过改变信号的脉冲宽度来控制输出信号的平均功率。在PWM调光中&#xff0c;芯片会以一定的频率产生一系…

SpringCloud Alibaba 深入源码 - Nacos 和 Eureka 的区别(健康检测、服务的拉取和订阅)

目录 一、Nacos 和 Eureka 的区别 1.1、以 Nacos 注册流程来解析区别 一、Nacos 和 Eureka 的区别 1.1、以 Nacos 注册流程来解析区别 a&#xff09;首先&#xff0c;我们的服务启动时。都会把自己的信息提交给注册中心&#xff0c;然后注册中心就会把信息保存下来. 注册的…

ELK日志分析

目录 一、ELK概述 &#xff08;一&#xff09;ELK的定义 &#xff08;二&#xff09;ELK工具 1.ElasticSearch 2.Kiabana 3.Logstash &#xff08;1&#xff09;定义 &#xff08;2&#xff09;插件 ① input ② filter ③ output &#xff08;三&#xff09;可以添…

快速排序(三)——hoare法

目录 ​一.前言 二.快速排序 hoare排法​ 三.结语 一.前言 本文给大家带来的是快速排序&#xff0c;快速排序是一种很强大的排序方法&#xff0c;相信大家在学习完后一定会有所收获。 码字不易&#xff0c;希望大家多多支持我呀&#xff01;&#xff08;三连&#xff0b;关…

Spring Boot3整合Druid(监控功能)

目录 1.前置条件 2.导依赖 错误依赖&#xff1a; 正确依赖&#xff1a; 3.配置 1.前置条件 已经初始化好一个spring boot项目且版本为3X&#xff0c;项目可正常启动。 作者版本为3.2.2最新版 2.导依赖 错误依赖&#xff1a; 这个依赖对于spring boot 3的支持不够&#…

H5嵌入小程序适配方案

时间过去了两个多月&#xff0c;2024已经到来&#xff0c;又老了一岁。头发也掉了好多。在这两个月时间里都忙着写页面&#xff0c;感觉时间过去得很快。没有以前那么轻松了。也不是遇到了什么难点技术&#xff0c;而是接手了一个很烂得项目。能有多烂&#xff0c;一个页面发起…

开源无代码应用程序生成器Saltcorn

什么是 Saltcorn &#xff1f; Saltcorn 是一个无需编写任何代码即可构建数据库 Web 应用程序的平台。它配备了一个吸睛的仪表板&#xff0c;丰富的生态系统、视图生成器以及支持主题的界面&#xff0c;使用直观的点击、拖放用户界面来构建整个应用程序。 软件的特点&#xff1…

智慧文旅运营综合平台:重塑文化旅游产业的新引擎

目录 一、建设意义 二、包含内容 三、功能架构 四、典型案例 五、智慧文旅全套解决方案 - 210份下载 在数字化浪潮席卷全球的今天&#xff0c;智慧文旅运营综合平台作为文化旅游产业与信息技术深度融合的产物&#xff0c;正逐渐显现出其强大的生命力和广阔的发展前景。 该…

海外抖音TikTok、正在内测 AI 生成歌曲功能,依靠大语言模型 Bloom 进行文本生成歌曲

近日&#xff0c;据外媒The Verge报道&#xff0c;TikTok正在测试一项新功能&#xff0c;利用大语言模型Bloom的AI能力&#xff0c;允许用户上传歌词文本&#xff0c;并使用AI为其添加声音。这一创新旨在为用户提供更多创作音乐的工具和选项。 Bloom 是由AI初创公司Hugging Fac…

C语言——内存函数介绍和模拟实现(memcpy、memmove、memset、memcmp)

之前我们讲过一些字符串函数&#xff08;http://t.csdnimg.cn/ZcvCo&#xff09;&#xff0c;今天我们来讲一讲几个内存函数&#xff0c;那么可能有人要问了&#xff0c;都有字符串函数了&#xff0c;怎么又来个内存函数&#xff0c;这不是一样的么&#xff1f; 我们要知道之前…

第十二站(20天):C++泛型编程

模板 C提供了模板(template)编程的概念。所谓模板&#xff0c;实际上是建立一个通用函数或类&#xff0c; 其 类内部的类型和函数的形参类型不具体指定 &#xff0c;用一个虚拟的类型来代表。这种通用的方式称 为模板。 模板是泛型编程的基础, 泛型编程即以一种独立于任何特定…

C++面试:跳表

目录 跳表介绍 跳表的特点&#xff1a; 跳表的应用场景&#xff1a; C 代码示例&#xff1a; 跳表的特性 跳表示例 总结 跳表&#xff08;Skip List&#xff09;是一种支持快速搜索、插入和删除的数据结构&#xff0c;具有相对简单的实现和较高的查询性能。下面是跳表…

职业规划,软件开发工程师的岗位任职资格

软件工程师是指从事软件开发的人&#xff0c;主要的工作涉及到项目培训和项目设计两个方面。在实际工作中&#xff0c;软件工程师是一个广义的概念&#xff0c;包括了很多与软件相关的人员。除开最基础的编程语言&#xff0c;还有数据库语言等等。从事这份工作&#xff0c;需要…

记录一下uniapp 集成腾讯im特别卡(已解决)

uniapp的项目运行在微信小程序 , 安卓 , ios手机三端 , 之前这个项目集成过im,不过版本太老了,0.x的版本, 现在需要添加客服功能,所以就升级了 由于是二开 , 也为了方便 , 沿用之前的webview嵌套腾讯IM的方案 , 选用uniapp集成ui ,升级之后所有安卓用户反馈点击进去特别卡,几…

HR人才测评,如何做技术研发人员基本素质测评?

技术研发人员的基本素质测评&#xff0c;可以从以下几个方面考虑&#xff1a; 1. 技术能力&#xff1a;首要的因素是技术能力&#xff0c;包括编程能力、算法能力、架构设计能力、代码调试和优化能力等。在测评中可以通过技术测试、编程练习、项目经验等方式来考察。 2. 学习…

Java - 深入理解加密解密和签名算法

文章目录 应用的接口安全性问题可能来源加密解密Why保护数据隐私防止未经授权的访问防止数据泄露 对称加密 VS 单向加密 VS 非对称加密一、对称加密二、单向加密&#xff08;哈希加密&#xff09;三、非对称加密 常用的对称加密算法1. AES&#xff08;高级加密标准&#xff09;…

Django从入门到精通(二)

目录 三、视图 3.1、文件or文件夹 3.2、相对和绝对导入urls 3.3、视图参数requests 3.4、返回值 3.5、响应头 3.6、FBV和CBV FBV 四、静态资源 4.1、静态文件 4.2、媒体文件 五、模板 5.1、寻找html模板 5.2、模板处理的本质 5.3、常见模板语法 5.4、内置模板函…

对称密码算法有什么优点

对称密码算法是一种加密和解密数据的方法&#xff0c;其中加密和解密使用相同的密钥。这种方法的一个关键特点是加密和解密的速度非常快&#xff0c;因此它在许多需要高速加密的应用中非常有用。 对称密码算法的优点主要在于其效率和安全性。由于加密和解密使用相同的密钥&…