复现PointNet++(语义分割网络):Windows + PyTorch + S3DIS语义分割 + 代码

一、平台

Windows 10

GPU RTX 3090 + CUDA 11.1 + cudnn 8.9.6

Python 3.9

Torch 1.9.1 + cu111

所用的原始代码:https://github.com/yanx27/Pointnet_Pointnet2_pytorch

二、数据

Stanford3dDataset_v1.2_Aligned_Version

三、代码

分享给有需要的人,代码质量勿喷。

对源代码进行了简化和注释。

分割结果保存成txt,或者利用 laspy 生成点云。

别问为啥在C盘,问就是2T的三星980Pro

3.1 文件组织结构

3.2 数据预处理

3.2.1 run_collect_indoor3d_data.py 生成*.npy文件

改了路径

3.2.2 indoor3d_util.py

改了路径

3.2.3 S3DISDataLoader.py

改了路径

3.3 训练 train_SematicSegmentation.py

# 参考
# https://github.com/yanx27/Pointnet_Pointnet2_pytorch
# 先在Terminal运行:python -m visdom.server
# 再运行本文件import argparse
import os
# import datetime
import logging
import importlib
import shutil
from tqdm import tqdm
import numpy as np
import time
import visdom
import torch
import warnings
warnings.filterwarnings('ignore')from dataset.S3DISDataLoader import S3DISDataset
from PointNet2 import dataProcess# PointNet
from PointNet2.pointnet_sem_seg import get_model as PNss
from PointNet2.pointnet_sem_seg import get_loss as PNloss# PointNet++
from PointNet2.pointnet2_sem_seg import get_model as PN2SS
from PointNet2.pointnet2_sem_seg import get_loss as PN2loss# True为PointNet++
PN2bool = True
# PN2bool = False# 当前文件的路径
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))# 训练输出模型的路径: PointNet
dirModel1 = ROOT_DIR + '/trainModel/pointnet_model'
if not os.path.exists(dirModel1):os.makedirs(dirModel1)
# 训练输出模型的路径
dirModel2 = ROOT_DIR + '/trainModel/PointNet2_model'
if not os.path.exists(dirModel2):os.makedirs(dirModel2)# 日志的路径
pathLog = os.path.join(ROOT_DIR, 'LOG_train.txt')# 数据集的路径
pathDataset = os.path.join(ROOT_DIR, 'dataset/stanford_indoor3d/')# 分类的类别
classNumber = 13
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase','board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):seg_label_to_cat[i] = cat# 日志和输出
def log_string(str):logger.info(str)print(str)def inplace_relu(m):classname = m.__class__.__name__if classname.find('ReLU') != -1:m.inplace=Truedef parse_args():parser = argparse.ArgumentParser('Model')parser.add_argument('--pnModel', type=bool, default=True, help='True = PointNet++;False = PointNet')parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')parser.add_argument('--epoch', default=320, type=int, help='Epoch to run [default: 32]')parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')parser.add_argument('--GPU', type=str, default='0', help='GPU to use [default: GPU 0]')parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')parser.add_argument('--npoint', type=int, default=4096, help='Point Number [default: 4096]')parser.add_argument('--step_size', type=int, default=10, help='Decay step for lr decay [default: every 10 epochs]')parser.add_argument('--lr_decay', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')return parser.parse_args()if __name__ == '__main__':# python -m visdom.servervisdomTL = visdom.Visdom()visdomTLwindow = visdomTL.line([0], [0], opts=dict(title='train_loss'))visdomVL = visdom.Visdom()visdomVLwindow = visdomVL.line([0], [0], opts=dict(title='validate_loss'))visdomTVL = visdom.Visdom(env='PointNet++')# region 创建日志文件logger = logging.getLogger("train")logger.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')file_handler = logging.FileHandler(pathLog)file_handler.setLevel(logging.INFO)file_handler.setFormatter(formatter)logger.addHandler(file_handler)#endregion#region 超参数args = parse_args()args.pnModel = PN2boollog_string('------------ hyper-parameter ------------')log_string(args)# 指定GPUos.environ["CUDA_VISIBLE_DEVICES"] = args.GPUpointNumber = args.npointbatchSize = args.batch_size#endregion# region dataset# train datatrainData = S3DISDataset(split='train',data_root=pathDataset, num_point=pointNumber,test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)trainDataLoader = torch.utils.data.DataLoader(trainData, batch_size=batchSize, shuffle=True, num_workers=0,pin_memory=True, drop_last=True,worker_init_fn=lambda x: np.random.seed(x + int(time.time())))# Validation datatestData = S3DISDataset(split='test',data_root=pathDataset, num_point=pointNumber,test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)testDataLoader = torch.utils.data.DataLoader(testData, batch_size=batchSize, shuffle=False, num_workers=0,pin_memory=True, drop_last=True)log_string("The number of training data is: %d" % len(trainData))log_string("The number of validation data is: %d" % len(testData))weights = torch.Tensor(trainData.labelweights).cuda()#endregion# region loading model:使用预训练模型或新训练modelSS = ''criterion = ''if PN2bool:modelSS = PN2SS(classNumber).cuda()criterion = PN2loss().cuda()modelSS.apply(inplace_relu)else:modelSS = PNss(classNumber).cuda()criterion = PNloss().cuda()modelSS.apply(inplace_relu)# 权重初始化def weights_init(m):classname = m.__class__.__name__if classname.find('Conv2d') != -1:torch.nn.init.xavier_normal_(m.weight.data)torch.nn.init.constant_(m.bias.data, 0.0)elif classname.find('Linear') != -1:torch.nn.init.xavier_normal_(m.weight.data)torch.nn.init.constant_(m.bias.data, 0.0)try:path_premodel = ''if PN2bool:path_premodel = os.path.join(dirModel2, 'best_model_S3DIS.pth')else:path_premodel = os.path.join(dirModel1, 'best_model_S3DIS.pth')checkpoint = torch.load(path_premodel)start_epoch = checkpoint['epoch']# print('pretrain epoch = '+str(start_epoch))modelSS.load_state_dict(checkpoint['model_state_dict'])log_string('!!!!!!!!!! Use pretrain model')except:log_string('...... starting new training ......')start_epoch = 0modelSS = modelSS.apply(weights_init)#endregion# start_epoch = 0# modelSS = modelSS.apply(weights_init)#region 训练的参数和选项if args.optimizer == 'Adam':optimizer = torch.optim.Adam(modelSS.parameters(),lr=args.learning_rate,betas=(0.9, 0.999),eps=1e-08,weight_decay=args.decay_rate)else:optimizer = torch.optim.SGD(modelSS.parameters(), lr=args.learning_rate, momentum=0.9)def bn_momentum_adjust(m, momentum):if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):m.momentum = momentumLEARNING_RATE_CLIP = 1e-5MOMENTUM_ORIGINAL = 0.1MOMENTUM_DECCAY = 0.5MOMENTUM_DECCAY_STEP = args.step_sizeglobal_epoch = 0best_iou = 0#endregionfor epoch in range(start_epoch, args.epoch):# region Train on chopped sceneslog_string('****** Epoch %d (%d/%s) ******' % (global_epoch + 1, epoch + 1, args.epoch))lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)log_string('Learning rate:%f' % lr)for param_group in optimizer.param_groups:param_group['lr'] = lrmomentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // MOMENTUM_DECCAY_STEP))if momentum < 0.01:momentum = 0.01log_string('BN momentum updated to: %f' % momentum)modelSS = modelSS.apply(lambda x: bn_momentum_adjust(x, momentum))modelSS = modelSS.train()#endregion# region 训练num_batches = len(trainDataLoader)total_correct = 0total_seen = 0loss_sum = 0for i, (points, target) in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):# 梯度归零optimizer.zero_grad()# xyzLpoints = points.data.numpy() # ndarray = bs,4096,9(xyz rgb nxnynz)points[:, :, :3] = dataProcess.rotate_point_cloud_z(points[:, :, :3]) ## 数据处理的操作points = torch.Tensor(points) # tensor = bs,4096,9points, target = points.float().cuda(), target.long().cuda()points = points.transpose(2, 1) # tensor = bs,9,4096# 预测结果seg_pred, trans_feat = modelSS(points) # tensor = bs,4096,13  # tensor = bs,512,16seg_pred = seg_pred.contiguous().view(-1, classNumber) # tensor = (bs*4096=)点数量,13# 真实标签batch_label = target.view(-1, 1)[:, 0].cpu().data.numpy() # ndarray = (bs*4096=)点数量target = target.view(-1, 1)[:, 0] # tensor = (bs*4096=)点数量# lossloss = criterion(seg_pred, target, trans_feat, weights)loss.backward()# 优化器来更新模型的参数optimizer.step()pred_choice = seg_pred.cpu().data.max(1)[1].numpy() # ndarray = (bs*4096=)点数量correct = np.sum(pred_choice == batch_label) # 预测正确的点数量total_correct += correcttotal_seen += (batchSize * pointNumber)loss_sum += losslog_string('Training mean loss: %f' % (loss_sum / num_batches))log_string('Training accuracy: %f' % (total_correct / float(total_seen)))# drawtrainLoss = (loss_sum.item()) / num_batchesvisdomTL.line([trainLoss], [epoch+1], win=visdomTLwindow, update='append')#endregion# region 保存模型if epoch % 1 == 0:modelpath=''if PN2bool:modelpath = os.path.join(dirModel2, 'model' + str(epoch + 1) + '_S3DIS.pth')else:modelpath = os.path.join(dirModel1, 'model' + str(epoch + 1) + '_S3DIS.pth')state = {'epoch': epoch,'model_state_dict': modelSS.state_dict(),'optimizer_state_dict': optimizer.state_dict(),}torch.save(state, modelpath)logger.info('Save model...'+modelpath)#endregion# region Evaluate on chopped sceneswith torch.no_grad():num_batches = len(testDataLoader)total_correct = 0total_seen = 0loss_sum = 0labelweights = np.zeros(classNumber)total_seen_class = [0 for _ in range(classNumber)]total_correct_class = [0 for _ in range(classNumber)]total_iou_deno_class = [0 for _ in range(classNumber)]modelSS = modelSS.eval()log_string('****** Epoch Evaluation %d (%d/%s) ******' % (global_epoch + 1, epoch + 1, args.epoch))for i, (points, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):points = points.data.numpy() # ndarray = bs,4096,9points = torch.Tensor(points) # tensor = bs,4096,9points, target = points.float().cuda(), target.long().cuda() # tensor = bs,4096,9 # tensor = bs,4096points = points.transpose(2, 1) # tensor = bs,9,4096seg_pred, trans_feat = modelSS(points) # tensor = bs,4096,13 # tensor = bs,512,16pred_val = seg_pred.contiguous().cpu().data.numpy() # ndarray = bs,4096,13seg_pred = seg_pred.contiguous().view(-1, classNumber) # tensor = bs*4096,13batch_label = target.cpu().data.numpy() # ndarray = bs,4096target = target.view(-1, 1)[:, 0] # tensor = bs*4096loss = criterion(seg_pred, target, trans_feat, weights)loss_sum += losspred_val = np.argmax(pred_val, 2) # ndarray = bs,4096correct = np.sum((pred_val == batch_label))total_correct += correcttotal_seen += (batchSize * pointNumber)tmp, _ = np.histogram(batch_label, range(classNumber + 1))labelweights += tmpfor l in range(classNumber):total_seen_class[l] += np.sum((batch_label == l))total_correct_class[l] += np.sum((pred_val == l) & (batch_label == l))total_iou_deno_class[l] += np.sum(((pred_val == l) | (batch_label == l)))labelweights = labelweights.astype(np.float32) / np.sum(labelweights.astype(np.float32))mIoU = np.mean(np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6))log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))log_string('eval point avg class IoU: %f' % (mIoU))log_string('eval point accuracy: %f' % (total_correct / float(total_seen)))log_string('eval point avg class acc: %f' % (np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6))))iou_per_class_str = '------- IoU --------\n'for l in range(classNumber):iou_per_class_str += 'class %s weight: %.3f, IoU: %.3f \n' % (seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])), labelweights[l - 1],total_correct_class[l] / float(total_iou_deno_class[l]))log_string(iou_per_class_str)log_string('Eval mean loss: %f' % (loss_sum / num_batches))log_string('Eval accuracy: %f' % (total_correct / float(total_seen)))# drawvalLoss = (loss_sum.item()) / num_batchesvisdomVL.line([valLoss], [epoch+1], win=visdomVLwindow, update='append')# region 根据 mIoU确定最佳模型if mIoU >= best_iou:best_iou = mIoUbestmodelpath = ''if PN2bool:bestmodelpath = os.path.join(dirModel2, 'best_model_S3DIS.pth')else:bestmodelpath = os.path.join(dirModel1, 'best_model_S3DIS.pth')state = {'epoch': epoch,'class_avg_iou': mIoU,'model_state_dict': modelSS.state_dict(),'optimizer_state_dict': optimizer.state_dict(),}torch.save(state, bestmodelpath)logger.info('Save best model......'+bestmodelpath)log_string('Best mIoU: %f' % best_iou)#endregion#endregionglobal_epoch += 1# drawvisdomTVL.line(X=[epoch+1], Y=[trainLoss],name="train loss", win='line', update='append',opts=dict(showlegend=True, markers=False,title='PointNet++ train validate loss',xlabel='epoch', ylabel='loss'))visdomTVL.line(X=[epoch+1], Y=[valLoss], name="train loss", win='line', update='append')log_string('-------------------------------------------------\n\n')

3.4 预测测试 test_SematicSegmentation.py

# 参考
# https://github.com/yanx27/Pointnet_Pointnet2_pytorchimport argparse
import sys
import os
import numpy as np
import logging
from pathlib import Path
import importlib
from tqdm import tqdm
import torch
import warnings
warnings.filterwarnings('ignore')from dataset.S3DISDataLoader import ScannetDatasetWholeScene
from dataset.indoor3d_util import g_label2color# PointNet
from PointNet2.pointnet_sem_seg import get_model as PNss
# PointNet++
from PointNet2.pointnet2_sem_seg import get_model as PN2SSPN2bool = True
# PN2bool = False# region 函数:投票;日志输出;保存结果为las。
# 投票决定结果
def add_vote(vote_label_pool, point_idx, pred_label, weight):B = pred_label.shape[0]N = pred_label.shape[1]for b in range(B):for n in range(N):if weight[b, n] != 0 and not np.isinf(weight[b, n]):vote_label_pool[int(point_idx[b, n]), int(pred_label[b, n])] += 1return vote_label_pool# 日志
def log_string(str):logger.info(str)print(str)# save to LAS
import laspy
def SaveResultLAS(newLasPath, point_np, rgb_np, label1, label2):# datanewx = point_np[:, 0]newy = point_np[:, 1]newz = point_np[:, 2]newred = rgb_np[:, 0]newgreen = rgb_np[:, 1]newblue = rgb_np[:, 2]newclassification = label1newuserdata = label2minx = min(newx)miny = min(newy)minz = min(newz)# create a new headernewheader = laspy.LasHeader(point_format=3, version="1.2")newheader.scales = np.array([0.0001, 0.0001, 0.0001])newheader.offsets = np.array([minx, miny, minz])newheader.add_extra_dim(laspy.ExtraBytesParams(name="Classification", type=np.uint8))newheader.add_extra_dim(laspy.ExtraBytesParams(name="UserData", type=np.uint8))# create a Lasnewlas = laspy.LasData(newheader)newlas.x = newxnewlas.y = newynewlas.z = newznewlas.red = newrednewlas.green = newgreennewlas.blue = newbluenewlas.Classification = newclassificationnewlas.UserData = newuserdata# writenewlas.write(newLasPath)# 超参数
def parse_args():parser = argparse.ArgumentParser('Model')parser.add_argument('--pnModel', type=bool, default=True, help='True = PointNet++;False = PointNet')parser.add_argument('--batch_size', type=int, default=32, help='batch size in testing [default: 32]')parser.add_argument('--GPU', type=str, default='0', help='specify GPU device')parser.add_argument('--num_point', type=int, default=4096, help='point number [default: 4096]')parser.add_argument('--test_area', type=int, default=5, help='area for testing, option: 1-6 [default: 5]')parser.add_argument('--num_votes', type=int, default=1,help='aggregate segmentation scores with voting [default: 1]')return parser.parse_args()#endregion# 当前文件的路径
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))# 模型的路径
pathTrainModel = os.path.join(ROOT_DIR, 'trainModel/pointnet_model')
if PN2bool:pathTrainModel = os.path.join(ROOT_DIR, 'trainModel/PointNet2_model')# 结果路径
visual_dir = ROOT_DIR + '/testResultPN/'
if PN2bool:visual_dir = ROOT_DIR + '/testResultPN2/'
visual_dir = Path(visual_dir)
visual_dir.mkdir(exist_ok=True)# 日志的路径
pathLog = os.path.join(ROOT_DIR, 'LOG_test_eval.txt')# 数据集的路径
pathDataset = os.path.join(ROOT_DIR, 'dataset/stanford_indoor3d/')# 分割类别排序
classNumber = 13
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase','board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):seg_label_to_cat[i] = catif __name__ == '__main__':#region LOG infologger = logging.getLogger("test_eval")logger.setLevel(logging.INFO) #日志级别:DEBUG, INFO, WARNING, ERROR, 和 CRITICALfile_handler = logging.FileHandler(pathLog)file_handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')file_handler.setFormatter(formatter)logger.addHandler(file_handler)#endregion#region 超参数args = parse_args()args.pnModel = PN2boollog_string('--- hyper-parameter ---')log_string(args)os.environ["CUDA_VISIBLE_DEVICES"] = args.GPUbatchSize = args.batch_sizepointNumber = args.num_pointtestArea = args.test_areavoteNumber = args.num_votes#endregion#region ---------- 加载语义分割的模型 ----------log_string("---------- Loading sematic segmentation model ----------")ssModel = ''if PN2bool:ssModel = PN2SS(classNumber).cuda()else:ssModel = PNss(classNumber).cuda()path_model = os.path.join(pathTrainModel, 'best_model_S3DIS.pth')checkpoint = torch.load(path_model)ssModel.load_state_dict(checkpoint['model_state_dict'])ssModel = ssModel.eval()#endregion# 模型推断(inference)或评估(evaluation)阶段,不需要计算梯度,而且关闭梯度计算可以显著减少内存占用,加速计算。log_string('--- Evaluation whole scene')with torch.no_grad():# IOU 结果total_seen_class = [0 for _ in range(classNumber)]total_correct_class = [0 for _ in range(classNumber)]total_iou_deno_class = [0 for _ in range(classNumber)]# 测试区域的所有文件testDataset = ScannetDatasetWholeScene(pathDataset, split='test', test_area=testArea, block_points=pointNumber)scene_id_name = testDataset.file_listscene_id_name = [x[:-4] for x in scene_id_name] # 名称(无扩展名)testCount = len(scene_id_name)testCount = 1# 遍历需要预测的物体for batch_idx in range(testCount):log_string("Inference [%d/%d] %s ..." % (batch_idx + 1, testCount, scene_id_name[batch_idx]))# 数据whole_scene_data = testDataset.scene_points_list[batch_idx]# 真值whole_scene_label = testDataset.semantic_labels_list[batch_idx]whole_scene_labelR = np.reshape(whole_scene_label, (whole_scene_label.size, 1))# 预测标签vote_label_pool = np.zeros((whole_scene_label.shape[0], classNumber))# 同一物体多次预测for _ in tqdm(range(voteNumber), total=voteNumber):scene_data, scene_label, scene_smpw, scene_point_index = testDataset[batch_idx]num_blocks = scene_data.shape[0]s_batch_num = (num_blocks + batchSize - 1) // batchSizebatch_data = np.zeros((batchSize, pointNumber, 9))batch_label = np.zeros((batchSize, pointNumber))batch_point_index = np.zeros((batchSize, pointNumber))batch_smpw = np.zeros((batchSize, pointNumber))for sbatch in range(s_batch_num):start_idx = sbatch * batchSizeend_idx = min((sbatch + 1) * batchSize, num_blocks)real_batch_size = end_idx - start_idxbatch_data[0:real_batch_size, ...] = scene_data[start_idx:end_idx, ...]batch_label[0:real_batch_size, ...] = scene_label[start_idx:end_idx, ...]batch_point_index[0:real_batch_size, ...] = scene_point_index[start_idx:end_idx, ...]batch_smpw[0:real_batch_size, ...] = scene_smpw[start_idx:end_idx, ...]batch_data[:, :, 3:6] /= 1.0torch_data = torch.Tensor(batch_data)torch_data = torch_data.float().cuda()torch_data = torch_data.transpose(2, 1)seg_pred, _ = ssModel(torch_data)batch_pred_label = seg_pred.contiguous().cpu().data.max(2)[1].numpy()# 投票产生预测标签vote_label_pool = add_vote(vote_label_pool, batch_point_index[0:real_batch_size, ...],batch_pred_label[0:real_batch_size, ...],batch_smpw[0:real_batch_size, ...])# region  保存预测的结果# 预测标签pred_label = np.argmax(vote_label_pool, 1)pred_labelR = np.reshape(pred_label, (pred_label.size, 1))# 点云-真值-预测标签pcrgb_ll = np.hstack((whole_scene_data, whole_scene_labelR, pred_labelR))# ---------- 保存成 txt ----------pathTXT = os.path.join(visual_dir, scene_id_name[batch_idx] + '.txt')np.savetxt(pathTXT, pcrgb_ll, fmt='%f', delimiter='\t')log_string('save:' + pathTXT)# ---------- 保存成 las ----------pathLAS = os.path.join(visual_dir, scene_id_name[batch_idx] + '.las')SaveResultLAS(pathLAS, pcrgb_ll[:,0:3], pcrgb_ll[:,3:6], pcrgb_ll[:,6], pcrgb_ll[:,7])log_string('save:' + pathLAS)# endregion# IOU 临时结果total_seen_class_tmp = [0 for _ in range(classNumber)]total_correct_class_tmp = [0 for _ in range(classNumber)]total_iou_deno_class_tmp = [0 for _ in range(classNumber)]for l in range(classNumber):total_seen_class_tmp[l] += np.sum((whole_scene_label == l))total_correct_class_tmp[l] += np.sum((pred_label == l) & (whole_scene_label == l))total_iou_deno_class_tmp[l] += np.sum(((pred_label == l) | (whole_scene_label == l)))total_seen_class[l] += total_seen_class_tmp[l]total_correct_class[l] += total_correct_class_tmp[l]total_iou_deno_class[l] += total_iou_deno_class_tmp[l]iou_map = np.array(total_correct_class_tmp) / (np.array(total_iou_deno_class_tmp, dtype=np.float64) + 1e-6)print(iou_map)arr = np.array(total_seen_class_tmp)tmp_iou = np.mean(iou_map[arr != 0])log_string('Mean IoU of %s: %.4f' % (scene_id_name[batch_idx], tmp_iou))IoU = np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6)iou_per_class_str = '----- IoU -----\n'for l in range(classNumber):iou_per_class_str += 'class %s, IoU: %.3f \n' % (seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])),total_correct_class[l] / float(total_iou_deno_class[l]))log_string(iou_per_class_str)log_string('eval point avg class IoU: %f' % np.mean(IoU))log_string('eval whole scene point avg class acc: %f' % (np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6))))log_string('eval whole scene point accuracy: %f' % (np.sum(total_correct_class) / float(np.sum(total_seen_class) + 1e-6)))log_string('--------------------------------------\n\n')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/638361.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法专题[递归-搜索-回溯-2-DFS]

算法专题[递归-搜索-回溯-2-DFS] 一.计算布尔二叉树的值&#xff1a;1.思路一&#xff1a;2.GIF题目解析 二.求根节点到叶子节点的数字之和1.思路一&#xff1a;2.GIF题目解析 三.二叉树剪枝1.思路一&#xff1a;2.GIF题目解析 四.验证二叉搜索树1.思路一&#xff1a;2.GIF题目…

1.2 数据模型

数据模型是对现实世界数据特征的抽象&#xff0c;是现实世界的模拟 数据模型是用来描述数据、组织数据和对数据进行操作的 数据模型应满足三方面要求&#xff1a; 1 能比较真实地模拟现实世界 2 容易为人所理解 3 便于在计算机上实现 数据模型…

08. Springboot集成webmagic实现网页爬虫

目录 1、前言 2、WebMagic 3、Springboot集成Webmagic 3.1、创建Springboot&#xff0c;并引入webmagic依赖 3.2、定义PageProcessor 3.3、元素选择 3.3.1、F12查看网页元素 3.3.2、元素选择 3.3.3、注意事项 4、小结 1、前言 在信息化的时代&#xff0c;网络爬虫已…

QT的绘图系统QPainterDevice与文件系统QIODevice

QT的绘图系统&#xff08;QPainterDevice&#xff09;与文件系统&#xff08;QIODevice&#xff09; 文章目录 1、Qt 的绘图系统1、QPainter的使用2、QPen(画笔&#xff09;及QBursh&#xff08;画刷&#xff09;3、手动更新窗口4、绘图设备1、四种绘图设备的 区别2、 QBitmap3…

零食折扣店,注定昙花一现?

年终岁末&#xff0c;又到了各类休闲零食产品一年一度的销售旺季。与过去不同的是&#xff0c;近年来的休闲零食赛道正因大量零食折扣店的涌现而显得热闹非凡。 随着主打折扣、低价的零食折扣店成为消费者特别是三四线下沉市场消费者的新宠&#xff0c;资本开始涌入并快速推动…

SpringCloud之OpenFeign的学习、快速上手

1、什么是OpenFeign OpenFeign简化了Http的开发。在RestTemplate的基础上做了封装&#xff0c;在微服务中的服务调用发送网络请求起到了重要的作用&#xff0c;简化了开发&#xff0c;可以让我们跟写接口一样调其他服务。 并且OpenFeign内置了Ribbon实现负载均衡。 官方文档…

69.使用Go标准库compress/gzip压缩数据存入Redis避免BigKey

文章目录 一&#xff1a;简介二&#xff1a;Go标准库compress/gzip包介绍ConstantsVariablestype Headertype Reader 三&#xff1a;代码实践1、压缩与解压工具包2、单元测试3、为何压缩后还要用base64编码 代码地址&#xff1a; https://gitee.com/lymgoforIT/golang-trick/t…

SpringBoot3整合OpenAPI3(Swagger3)

文章目录 一、引入依赖二、使用1. OpenAPIDefinition Info2. Tag3. Operation4. Parameter5. Schema6. ApiResponse swagger2更新到3后&#xff0c;再使用方法上发生了很大的变化&#xff0c;名称也变为OpenAPI3。 官方文档 一、引入依赖 <dependency><groupId>…

汇编语言学习1

Compiler Explorer (godbolt.org) 这个网站可以把我们写的C语言等实时翻译为汇编等语言&#xff0c;便于参考 一个不错的视频讲解 riscv(RISC-V)指令集(MIT) A01 Introduction_哔哩哔哩_bilibili risc-v汇编中&#xff0c;a0, a1, ... 用来传送函数参数&#xff0c;a0, a1用来…

深度解析Python关键字:掌握核心语法的基石(新版本35+4)

目录 关键字 keyword 关键字列表 kwlist softkwlist 关键字分类 数据类型 True、False None 运算类型 and、or、not in is 模块导入 import 辅助关键字 from、as 上下文管理 with 占位语句 pass 流程控制 if、elif、else for while break、continue…

【AI】深度学习在编码中的应用(8)

接上文&#xff0c;本文来梳理和学习智能编码中&#xff0c; 基于残差编码的框架。 智能图像编解码器的成功也推动了智能视频编解码器的发展。传统的视频压缩方法依靠预测编码对运动信息和残差信息分别进行编码。根据时-空域冗余消除方式和阶段不同&#xff0c;现有相关方法可…

字符串操作scanf与gets的区别

在c语言中对于字符串的输入 scanf char str[20]; scanf("%s",str); gets char str[20]; gets(str); 区别&#xff1a; 1. scanf不能获取空格之后的字符串 例如&#xff1a; "how are you" 使用scanf("%s",str)只能获取到 "how&q…

常见异常类及异常对象属性

程序运行的过程中&#xff0c;会发生各种非正常状况&#xff0c;比如程序运行时磁盘空间不足&#xff0c;网络连接中断&#xff0c;被操作的文件不存在。(异常在程序运行时发生)   针对这种情况下&#xff0c;C#程序引入了异常处理机制&#xff0c;通过异常处理机制对程序运行…

第十回 朱贵水亭施号箭 林冲雪夜上梁山-FreeBSD/Linux 控制台基础操作

林冲被众庄客捉住&#xff0c;吊在门楼下&#xff0c;正被打时&#xff0c;柴进来了&#xff0c;赶快把林冲救下来。原来这是柴进打猎用的小庄子&#xff0c; 林冲就把火烧草料场一事跟柴进详细的说了。柴进说兄弟真是命运多磨难啊。林冲住了几日&#xff0c;恐怕连累柴进&…

柠檬微趣面试准备

简单介绍一下spring原理 Spring框架是一个开源的Java应用程序框架&#xff0c;它提供了广泛的基础设施支持&#xff0c;帮助开发者构建Java应用程序。Spring的设计原则包括依赖注入&#xff08;DI&#xff09;和面向切面编程&#xff08;AOP&#xff09;等&#xff0c;以促使代…

rust嵌入式之用类函数宏简写状态机定义

笔者一向认为&#xff0c;用有限状态自动机来做硬件控制是最好的选择&#xff0c;同时又倾向于用文本定义来定义状态机是更好的做法。所以此次用rust开发嵌入式自然也是如此。 状态机实现起来很简单&#xff0c;关键是用文本来定义状态机&#xff0c;在rust中&#xff0c;自然…

Laykefu客服系统 任意文件上传漏洞复现

0x01 产品简介 Laykefu 是一款基于workerman+gatawayworker+thinkphp5搭建的全功能webim客服系统,旨在帮助企业有效管理和提供优质的客户服务。 0x02 漏洞概述 Laykefu客服系统/admin/users/upavatar.html接口处存在文件上传漏洞,而且当请求中Cookie中的”user_name“不为…

[学习笔记]刘知远团队大模型技术与交叉应用L3-Transformer_and_PLMs

RNN存在信息瓶颈的问题。 注意力机制的核心就是在decoder的每一步&#xff0c;都把encoder的所有向量提供给decoder模型。 具体的例子 先获得encoder隐向量的一个注意力分数。 注意力机制的各种变体 一&#xff1a;直接点积 二&#xff1a;中间乘以一个矩阵 三&#xff1a;…

找不到vcruntime140_1.dll无法继续执行怎么办?全面分析修复方法

当系统提示vcruntime140_1.dll文件出现错误时&#xff0c;可能会引发一系列影响计算机正常运行的问题。这个特定的动态链接库文件&#xff08;DLL&#xff09;是Microsoft Visual C Redistributable的一部分&#xff0c;对于许多基于Windows的应用程序来说至关重要。一旦vcrunt…

如何在供应链管理中有效管理供应商和采购成本

一、管理供应商 在供应链管理中,供应商的管理是至关重要的环节。有效的供应商管理不仅可以确保稳定的原材料供应,还可以降低采购成本,提高企业的竞争力。以下是一些管理供应商的有效方法: 供应商评估与选择在选择供应商之前,企业需要对潜在供应商进行全面的评估。评估标准…